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Posttraumatic Stress Disorder (PTSD) is an anxiety disorder that affects over 7.7 million 

adults and carries an estimated societal cost of $3.1 billion every year. People develop PTSD 

after exposure to a traumatic event. Alone or combined, approved pharmacotherapies or 

psychotherapy are somewhat effective, but symptoms for many remain refractory.  Emerging 

evidence suggests that opiate systems may modulate the development and expression of PTSD, 

and their role can be investigated preclinically. Pavlovian fear conditioning is a preclinical model 

which elicits behaviors mirroring those that occur in humans during and after exposure to 

trauma. This presents an experimental tool that can help elucidate the opiate mechanisms 

involved in traumatic memory as well as the resulting fear behavior.  
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Mu opioid receptor (MOR) analgesics, such as morphine, are often given as a response to 

trauma, and there is emerging evidence that they are, at least partially, protective against PTSD. 

The kappa opioid receptor (KOR) system has also been implicated in stress-related processes, 

with KOR agonists reported to enhance stress in both laboratory animals and in humans, and 

KOR antagonists reported to attenuate stress-like behaviors preclinically. This project attempted 

to clarify part of the role of the mu and kappa opiate receptor systems in mediating effects of 

Pavlovian fear conditioning in mice as a predictor of their involvement in some of the signs and 

symptoms of PTSD.  

Kappa agonists increased acute fear responses but surprisingly also facilitated fear 

extinction learning. This would suggest that the use of kappa agonists might increase the 

efficiency and effectiveness of this therapy and could improve existing PTSD patient outcomes. 

MOR agonists, as well as KOR antagonists reduced acute and long-term fear behavior.  These 

results support that the use KOR analgesics like morphine and fentanyl in the treatment of 

trauma could have an added benefit of reducing the emergence and persistence of PTSD. Self-

medication may help explain the comorbidity of opioid abuse in PTSD patient populations.  

Understanding the relative effects of these opiate ligands could lead to more informed usage of 

MOR analgesics which vary in mu and kappa receptor activity under battlefield and other 

traumatic conditions.   
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Introduction 

Poppies and PTSD: Opioid influence on a preclinical model of posttraumatic stress disorder. 
 

Posttraumatic stress disorder, its neurobiology and its current treatment. 

Posttraumatic Stress Disorder (PTSD) currently affects over 7.7 million adults in the U.S. 

and prevalence is increasing (Kessler et al., 2005; Kessler, Sonnega, Bromet, Hughes, & Nelson, 

1995).  PTSD treatment can involve psychotherapy and pharmacotherapy.  The most effective 

PTSD psychotherapy is exposure based behavioral therapy (Hetrick, Purcell, Garner, & Parslow, 

2010). This method involves the exposure of the patient to aversive stimuli (real or simulated) 

under controlled conditions. The two pharmacotherapies approved by the FDA to treat PTSD 

(Paxil and Zoloft) are antidepressants. These drugs can reduce the general anxiety or comorbid 

depression associated with PTSD but leave many symptoms untreated (Hetrick, et al., 2010). 

Alone or combined, these two types of treatment are sometimes effective, but symptoms for 

many remain refractory (Cooper, Carty, & Creamer, 2005; Hamner & Robert, 2005; Hetrick, et 

al., 2010). This leaves not only room for improvement in treatment development but also, in the 

study of the basic psychobiological mechanisms involved in PTSD.  

It is important to understand how drugs influence the presentation and formation of 

PTSD. Of specific interest are opioids. Several clinical studies show a relationship between 

morphine administration and a reduction in PTSD risk (Nixon, Ellis, Nehmy, & Ball, 2010). In 

one, the medical records of 696 injured U.S. military personnel without serious traumatic brain 

injury were analyzed, in cases where morphine was administered during early resuscitation and 

trauma care, 61% of patients developed PTSD as opposed to 76% of patients who did not receive 

morphine (Holbrook, Galarneau, Dye, Quinn, & Dougherty, 2010). Results were similar in a 

sample of 48 adolescents who were examined within 4 weeks of an injury that led to hospital 
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treatment. Morphine administration was associated with dose dependent reductions in PTSD 

diagnosis at a 6 month follow-up assessment (Nixon et al., 2010). This result was repeated in a 

different sample of 90 7-17 year olds assessed in an identical manner (Nixon, Nehmy, et al., 

2010; Stoddard et al., 2009) and in an additional sample of 120 trauma victims  assessed at 3 

months post event (Bryant, Creamer, O'Donnell, Silove, & McFarlane, 2009).  These studies 

show that there is a positive relationship between the dose of morphine administered and a 

decrease in likelihood of developing PTSD. In sum, these results also show that this relationship 

exists in humans of diverse ages and trauma sources. It is important therefore to investigate how 

opioids affect the expression and formation of PTSD. One place to start that large undertaking is 

to use a preclinical model of the disorder and investigate the effects of opioids on that model.  

Posttraumatic Stress Disorder Criteria 

Trauma associated anxiety has been discussed in medical literature earlier than the civil 

war though not known as PTSD, but by colloquialisms like shell-shock, war neurosis and battle 

fatigue (Newport & Nemeroff, 2000). It was not until the third edition of the APA’s  Diagnostic 

and Statistical Manual of Mental Disorders (DSM) in 1980 that trauma related anxiety 

syndromes were recognized and named posttraumatic stress disorder (Newport & Nemeroff, 

2000). This inclusion in the DSM was controversial. Many of the disorders symptoms 

overlapped with anxiety and mood disorders and so both the placement and uniqueness of the 

disorder was questioned (Horowitz, Weiss, & Marmar, 1987; Kinzie & Goetz, 1996). Since its 

inclusion in the DSM the diagnosis has undergone refinement and we have gained more 

knowledge about the unique psychobiology of PSTD that firmly cements the disorder as a 

distinctive diagnosis (Kellner & Yehuda, 1999; Yehuda, 2000, 2001).  
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The current diagnostic criteria for PTSD specify it as a complex and lasting anxiety 

response resulting from exposure to extreme trauma. PTSD presents with characteristic 

symptoms including persistent re-experiencing of the traumatic event, persistent avoidance of 

stimuli associated with the trauma and numbing of general responsiveness, and persistent 

symptoms of increased arousal.  The symptoms must be present for more than 1 month and the 

disturbance must cause clinically significant distress or impairment in social, occupational, or 

other important areas of functioning (DSM-IV™, 2000). A unique and essential feature of PTSD 

is the development of these characteristic symptoms following exposure to an extreme traumatic 

stressor. This stressor involves either direct personal experience of an event that involves death, 

injury, or a threat to the physical integrity of the person,; or witnessing an event that involves 

death, injury, or a threat to the physical integrity of another person,; or learning about unexpected 

or violent death, serious harm, or threat of death or injury experienced by a family member or 

other close associate (DSM-IV™, 2000).  This criterion is unique in the presentation of 

psychological disease in that it provides an external marked precipitating event in the 

development of a psychiatric disorder (A criterion).  The disorder may be especially severe or 

long lasting when the stressor is of human design (e.g., torture, rape). The likelihood of 

developing this disorder may increase as the intensity of and physical proximity to the stressor 

increase (DSM-IV™, 2000). Other important criterion are divided into three categories: Re-

experiencing the event or the physiological reactive state present in the original instance (B 

criterion), avoidance of thoughts, feelings, actions or any stimuli that might remind them of or be 

similar to the original instance (C criterion), as well as a change in the overall basal level of 

anxiety and reactivity to stressful stimuli (D criterion) known as hyper-arousal (DSM-IV™, 

2000).  
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 The clinical B Criterion of re-experiencing the event can present in diverse ways. 

Commonly the person has recurrent and intrusive recollections of the event (Criterion B1) or 

recurrent distressing dreams during which the event is replayed (Criterion B2). In rare instances, 

the person experiences dissociative states that last from a few seconds to several hours, or even 

days, during which components of the event are relived and the person behaves as though 

experiencing the event at that moment (Criterion B3). Intense psychological distress (Criterion 

B4) or physiological reactivity (Criterion B5) often occurs when the person is exposed to 

triggering events that resemble or symbolize an aspect of the traumatic event (e.g. anniversaries 

of the traumatic event; hot humid weather for combat veterans of the South Pacific or hot dry 

weather for veterans of Iraq and Afghanistan; entering any parking garage for a woman who was 

raped in a parking garage) (DSM-IV™, 2000). 

 The person will make persistent attempts to limit exposure to stimuli associated with the 

trauma. They will try to avoid thoughts, feelings, or conversations about the traumatic event 

(Criterion C1) and to avoid activities, situation, or people who arouse recollections of it 

(Criterion C2). This avoidance of reminders may include amnesia for an important aspect of the 

traumatic event (Criterion C3). Diminished responsiveness to the external world, referred to as 

"psychic numbing" or "emotional anesthesia," usually begins soon after the traumatic event. The 

individual may complain of having markedly diminished interest or participation in previously 

enjoyed activities (Criterion C4), of feeling detached or estranged from other people (Criterion 

C5), or of having markedly reduced ability to feel emotions (especially those associated with 

intimacy, tenderness, and sexuality) (Criterion C6). The individual may have a sense of a 

foreshortened future (e.g., not expecting to have a career, marriage, children, or a normal life 

span) (Criterion C7)(DSM-IV™, 2000). 
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 These continual symptoms of anxiety or increased arousal experienced by the person 

were not present before the trauma. These symptoms may include difficulty falling or staying 

asleep that may be due to recurrent nightmares during which the traumatic event is relived 

(Criterion D1), hypervigilance (Criterion D4), and exaggerated startle response (Criterion D5). 

Some individuals report irritability or outbursts of anger (Criterion D2) or difficulty 

concentrating or completing tasks (Criterion D3)(DSM-IV™, 2000). 

 The diagnosis can also include specifiers denoting onset and duration of symptoms. The 

diagnosis includes the specifier Acute when the duration of symptoms is less than 3 months. 

When symptoms last 3 months or longer then the diagnosis might include the specifier Chronic.  

Finally the specifier Delayed Onset indicates that at least 6 months have passed between the 

traumatic event and the onset of the symptoms (DSM-IV™, 2000). As with many psychiatric 

diagnoses there is a very complex set of symptoms associated with PTSD. It is important as with 

other disorders to attempt to understand the physiological processes involved in the initiation and 

expression of PTSD.  

Neurobiology of PTSD 

 The neurobiological changes which occur as a result of exposure to trauma or stress have 

been studied with increasing interest since PTSD’s inclusion in the DSM. The changes in 

neurobiology related to PTSD are complex, involving dysregulation of neurotransmitters such as 

serotonin and norepinephrine, as well as the sympathetic nervous system (fight or flight) and 

Hypothalamic-Pituitary-Adrenal (HPA) axis (Heim & Nemeroff, 2009). The bulk of 

neurobiological PTSD research has concentrated on the HPA axis.  

The Hypothalamic-Pituitary-Adrenal axis. The HPA axis is the major stress response 

system and exerts its influence through the activation of adrenal glands through neuropeptide 

release. Upon exposure to stress, neurons in the hypothalamic paraventricular nucleus secrete 
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corticotropin-releasing factor (CRF) from the median eminence into the hypothalamo-

hypophyseal portal circulation, in which the peptide is transported to the anterior pituitary where 

it stimulates the production and release of adrenocorticotropic hormone (ACTH). 

Adrenocorticotropic hormone, in turn, stimulates the release of glucocorticoids from the adrenal 

cortex. Glucocorticoids affect metabolism, immune function, and the brain, altering 

physiological functions and behavior in reaction to the stressor. Multiple brain pathways 

modulate HPA axis activity. The hippocampus and prefrontal cortex (PFC) inhibit the HPA axis, 

whereas the amygdala and monoaminergic input from the brainstem stimulate the activity of 

paraventricular nucleus CRF neurons (Heim & Nemeroff, 2009). Glucocorticoids exert negative 

feedback control of the HPA axis by regulating hippocampal and hypothalamic paraventricular 

nucleus neurons, as well as ACTH secretion, through binding to glucocorticoid receptors (GR). 

Sustained glucocorticoid exposure has adverse effects on hippocampal neurons, including 

reduction in dendritic branching, and loss of dendritic spines (Arborelius, Owens, Plotsky, & 

Nemeroff, 1999; Fuchs & Gould, 2000; Nestler et al., 2002). 

Exposure to acute stressors activates the HPA axis this should result in an increased level 

of cortisol (a glucocorticoid released after exposure to stress), but paradoxically studies in 

combat veterans with PTSD revealed low concentrations of cortisol measured in urine or blood, 

compared to healthy controls (Yehuda, 2006; Yehuda et al., 1990). This counterintuitive finding 

has been replicated in Holocaust survivors, refugees, and abused persons with PTSD, although 

findings are not uniformly consistent across studies (Yehuda, 2006; Yehuda, et al., 1990). Other 

studies have shown similar to normal or even elevated levels of cortisol, differences in type and 

timing of the psychological trauma, symptom patterns, comorbidity, personality, and genetic 

dispositions, among other factors, may contribute to this inconsistency (Meewisse, Reitsma, de 

Vries, Gersons, & Olff, 2007). Studies using low-dose dexamethasone suppression and 
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metyrapone testing, two pharmacologic agents that alter the availability of stress hormones 

exerting feedback on the HPA axis, revealed that hypocortisolism in PTSD occurs in the context 

of increased sensitivity of the HPA axis to negative glucocorticoid feedback (Yehuda, 2006; 

Yehuda, Yang, Buchsbaum, & Golier, 2006). Findings of increased GR binding and function 

support the assumption of increased negative feedback sensitivity of the HPA axis in PTSD 

(Yehuda, 2006). At the central nervous system (CNS) level, increased cerebrospinal fluid 

concentrations of CRF have been measured in patients with PTSD, both in single lumbar 

puncture and serial sampling studies (Baker et al., 1999; Bremner, Licinio, et al., 

1997). Sustained elevations in CRF concentrations were observed despite comparably low 

cortisol concentrations, and the latter were negatively correlated with PTSD symptoms (Baker, et 

al., 1999). There is evidence of blunted  adrenocorticotropic hormone response to intravenous 

cortisol stimulation in PTSD patients (Yehuda, 2006).  The below normal levels of  

adrenocorticotropic hormone in response to exogenous cortisol in PTSD patients when compared 

to healthy volunteers suggests that the glucocorticoid system is less active in PTSD patients 

possibly due to a reduction in the total response levels of the system. One mechanism that may 

explain this is the downregulation of CRF receptors as a compensatory response to elevated 

cortisol levels seen in early diagnosed PTSD patients  (Yehuda, 2006). In addition, reduced 

volume of the hippocampus, the major brain region inhibiting the HPA axis, is a cardinal feature 

of PTSD (Bremner, Elzinga, Schmahl, & Vermetten, 2008). Taken together, the specific 

constellation of neuroendocrine findings in PTSD reflects sensitization of the HPA axis to 

exposure to stressors. This neuroendocrine pattern distinguishes PTSD from major depression, a 

frequently comorbid but distinct disorder (Yehuda, 2006).     
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Interestingly, prospective studies have shown that low cortisol levels at the time of 

exposure to psychological trauma predict the development of PTSD (Resnick, Yehuda, Pitman, 

& Foy, 1995; Yehuda, McFarlane, & Shalev, 1998), suggesting that hypocortisolism might be a 

preexisting risk factor that is associated with maladaptive stress responses such as PTSD. 

Consequently, administration of hydrocortisone directly after exposure to psychological trauma 

has been shown to reduce the risk for later development of PTSD in humans in several studies 

(de Quervain, 2008; Schelling et al., 2004). In addition, it was recently demonstrated that 

hydrocortisone treatment, simulating normal circadian cortisol rhythm, is effective in reducing 

some symptoms PTSD (Aerni et al., 2004). Indeed, decreased availability of cortisol, and hence 

lack of regulatory effects in the CNS, may have permissive effects towards the sustained 

activation of neural systems involved in stress reactivity and fear processing, including the CRF 

and norepinephrine (NE) systems (Heim, Ehlert, & Hellhammer, 2000; Yehuda, 

2006). Glucocorticoids further interfere with the retrieval of traumatic memories and thereby 

may prevent or reduce symptoms of PTSD (de Quervain, 2008; de Quervain & Margraf, 2008).   

Hypothalamic-Pituitary-Thyroid Axis. The HPT axis is an additional response to stress 

that has only more recently been studied in relation to PTSD. When the HPT axis is activated 

thyrotropin-releasing hormone (TRH) is released from the hypothalamus which stimulates the 

secretion of thyrotropin stimulating hormone (TSH) from the anterior pituitary gland. TSH, in 

turn, stimulates the thyroid gland to secrete thyroxine (T4) and tri-iodothyronine (T3). 

The thyroid axis is capable of emergency responses and increased T4 levels are part of an arousal 

signal (Mason, 1968). Increased HPT axis activity has been observed in PTSD patients as well as 

a link between hyperthyroidism and traumatic stress (Prange, 1999). Specifically the peripheral 

measures of the total and free fractions of T3 and T4 are elevated in patients with PTSD (Newport 
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& Nemeroff, 2000). The relative increases of T3 and T4 are disproportionate with a significantly 

higher increase occurring in T3 levels than T4 levels. This suggests an increase in the peripheral 

de-iodination of T4 to the more biologically active T3. This supports the observation of a 

sensitized response of the HPT system in PTSD patients. Which is further maintained by the 

elevated TSH release that occurs in PTSD patients when TRH is administered under testing 

conditions (Prange, 1999).  

Hippocampus. The most reproducible finding in structural imaging studies of PTSD is 

reduced volume of the hippocampus. The hippocampus is implicated in the control of stress 

responses, declarative memory and contextual aspects of fear conditioning, and is known as one 

of the most plastic regions in the brain. As noted above, prolonged exposure to stress and high 

glucocorticoid levels damages the hippocampus, leading to reduction in dendritic branching, loss 

of dendritic spines, and impairment of neurogenesis (Fuchs & Gould, 2000). Initial magnetic 

resonance imaging studies demonstrated smaller hippocampal volumes in Vietnam veterans with 

PTSD and patients with abuse-related PTSD compared to controls (Bremner et al., 1995; 

Bremner, Randall, et al., 1997; Gurvits et al., 1996; Stein, Koverola, Hanna, Torchia, & 

McClarty, 1997). Small hippocampal volumes were associated with the severity of trauma and 

memory impairments in these studies.  These findings were generally replicated in subsequent 

studies. Studies using proton magnetic resonance spectroscopy (MRS) observed reduced levels 

of N-acetyl aspartate (NAA), a marker of neuronal integrity, in the hippocampus of adult patients 

with PTSD (Rauch, Shin, & Phelps, 2006). Of note, NAA reductions were correlated with serum 

cortisol concentrations (Neylan et al., 2003). Interestingly, reduced hippocampal volume was not 

observed in children with PTSD (De Bellis et al., 1999). Hippocampal volume reduction in 

PTSD may reflect toxic effects over time of repeatedly increased glucocorticoid exposure or 
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increased glucocorticoid sensitivity, though recent evidence also suggests that a small 

hippocampus might represent a preexisting vulnerability factor for developing PTSD (Pitman et 

al., 2006). Moreover, in patients with major depression an early life trauma in the form of 

childhood abuse is associated with reduced hippocampal volume (Vythilingam et al., 

2002). Indeed, hippocampal deficits may promote activation of and failure to shut down stress 

responses, and may contribute to impaired extinction of conditioned fear as well as deficits in 

discriminating between safe and unsafe contexts. Studies using functional neuroimaging have 

further revealed that PTSD patients exhibit deficits in hippocampal activation during a verbal 

declarative memory task (Bremner et al., 1999). Both hippocampal atrophy and functional 

deficits reverse after successful treatment with selective serotonin reuptake inhibitors (commonly 

used to treat depression) (Bremner & Vermetten, 2004), which have been demonstrated to 

increase neurotrophic factors and neurogenesis in preclinical studies (Nestler, et al., 2002).      

Amygdala. In addition to the hippocampus, other brain structures implicated in a neural 

circuitry of stress include the amygdala and the prefrontal cortex. The amygdala is a critical 

limbic structure involved in emotional processing and in the acquisition of fear responses. The 

amygdala is connected to both cortical and subcortical regions. The basolateral complex is 

innervated by neocortical and subcortical sensory regions and sends information to the central 

nucleus of the amygdala. The central nucleus projects to the midbrain and brainstem nuclei to 

coordinate rapid autonomic, endocrine, and behavioral responses to danger. The central nucleus 

also receives visceral information from brainstem regions. Connections between the amygdala 

and the hippocampus are implicated in context conditioning. Connections between the PFC and 

the amygdala modulate stress responsiveness and mediate extinction of fear memory, inasmuch 

as the PFC exerts inhibitory control over the amygdala (Schulkin, 2006). The functional role of 
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the amygdala in mediating both stress responses and emotional learning suggests that changes in 

this region and its connected circuitry may be implicated in the pathophysiology of PTSD. 

Although there is no clear evidence for structural alterations of the amygdala in PTSD, 

functional imaging studies have revealed hyperresponsivity of the amygdala in PTSD during the 

presentation of traumatic scripts, cues, and other reminders (Liberzon & Sripada, 2008; Shin, 

Rauch, & Pitman, 2006). PTSD patients further show increased amygdala responses to general 

emotional stimuli that are not associated with the trauma, such as emotional faces(Shin, et al., 

2006). Of note, the amygdala also seems to be sensitized to subliminally presented threatening 

cues in PTSD (Hendler et al., 2003; Rauch et al., 2000; Schulkin, 2006).  Increased amygdala 

activation has also been reported for PTSD patients during fear acquisition in a conditioning 

experiment (Bremner et al., 2005). Given that increased amygdala reactivity has been linked to 

genetic traits (Hariri et al., 2002), which moderate risk for PTSD (Kilpatrick et al., 

2007), increased amygdala reactivity may represent a biological risk factor for the development 

of PTSD. 

Prefrontal Cortex. The medial prefrontal cortex (mPFC) comprises the anterior 

cingulate cortex (ACC), subcallosal cortex, and the medial frontal gyrus. The mPFC is connected 

with the amygdala, where it exerts inhibitory control over stress responses and emotional 

reactivity. The mPFC further mediates extinction of conditioned fear through active inhibition of 

acquired fear responses (Shin, et al., 2006). Patients with PTSD exhibit decreased volumes of the 

frontal cortex (Rauch et al., 2003), including reduced volumes of the ACC (Woodward et al., 

2006; Yamasue et al., 2003). The reduction in ACC volume was correlated with PTSD symptom 

severity in some of these studies. Altered shape of the ACC (Corbo, Clement, Armony, 

Pruessner, & Brunet, 2005) and decreased NAA concentrations in the ACC (De Bellis, 
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Keshavan, Spencer, & Hall, 2000) have also been reported in PTSD patients. A recent twin study 

suggests that volume loss in the ACC is an acquired correlate of having PTSD, rather than a 

preexisting risk factor (Kasai et al., 2008). Functional imaging studies have found decreased 

activation of the mPFC in PTSD patients in response to stimuli, such as traumatic scripts 

(Britton, Phan, Taylor, Fig, & Liberzon, 2005; Shin et al., 2004), combat pictures and sounds 

(Bremner, et al., 1999), trauma unrelated negative narratives (Lanius et al., 2003), fearful faces 

(Shin et al., 2005), emotional Stroop(Bremner et al., 2004), and others, though there are also 

discordant findings (Shin, et al., 2006). Reduced activation of the mPFC was associated with 

PTSD symptom severity in several of these studies and successful selective serotonin re-uptake 

inhibitor (SSRI) treatment restored mPFC activation patterns(Shin, et al., 2006). Of note, in the 

above cited conditioning experiment (Bremner, et al., 2005), extinction of conditioned fear was 

associated with decreased activation of the ACC, providing a biological basis for imprinted 

traumatic memories in PTSD. Given the connectivity between the amygdala and mPFC, 

interactions in activation patterns between these regions have been reported in PTSD, though the 

direction of the relationship is inconsistent across studies (Shin, et al., 2006). 

Catecholamines. The catecholamines comprise a family of neurotransmitters derived 

from the amino acid tyrosine. The rate-limiting factor in the synthesis of catecholamines is 

tyrosine hydroxylase, an enzyme that converts tyrosine into DOPA, which subsequently is 

converted into dopamine (DA) by the action of DOPA decarboxylase. In noradrenergic neurons, 

dopamine β hydroxylase converts DA into NE. NE is one of the principal mediators of the CNS 

and autonomic stress responses. The majority of CNS NE is derived from neurons of the locus 

ceruleus (LC) that project to various brain regions involved in the stress response, including the 

PFC, amygdala, hippocampus, hypothalamus, periaqueductal grey, and thalamus. There is 
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evidence for a feed-forward circuit connecting the amygdala and the hypothalamus with the LC, 

in which CRF and NE interact to increase fear conditioning and encoding of emotional 

memories, enhance arousal and vigilance, and integrate endocrine and autonomic responses to 

stress. Glucocorticoids inhibit this cascade (Pavcovich & Valentino, 1997). In the periphery, 

sympathoadrenal activation during exposure to stressors results in the release of NE and 

epinephrine from the adrenal medulla, increased release of NE from sympathetic nerve endings, 

and changes in blood flow to a variety of organs, reflecting an alarm reaction that mobilizes the 

body to allow for optimal coping. The effects of NE are mediated via postsynaptic α1, β1 and 

β2 receptors, whereas another NE-activated receptor, the α2 receptor, serves as a presynaptic 

autoreceptor inhibiting NE release (Koob, 1999). Because of its multiple roles in regulating 

arousal and autonomic stress responses, as well as promoting the encoding of emotional 

memories, NE has been a central candidate in studying the pathophysiology of PTSD. 

A cardinal feature of patients with PTSD is sustained hyperactivity of the sympathetic 

branch of the autonomic nervous system, as evidenced by heart rate, blood pressure, skin 

conductance level, and other psychophysiological measures. Accordingly, increased urinary 

excretion of NE and epinephrine, and their metabolites, has been documented in combat 

veterans, abused women, and children with PTSD. In addition, patients with PTSD exhibit 

increased heart rate, blood pressure, and NE responses to challenge, such as traumatic reminders. 

Decreased platelet α2 receptor binding further suggests NE hyperactivity in PTSD (Strawn & 

Geracioti, 2008; Vermetten & Bremner, 2002). There is also evidence for a role of altered CNS 

NE function in PTSD. Administration of the α2 receptor antagonist yohimbine, which increases 

NE release, induces symptoms of flashbacks and increased autonomic responses in patients with 

PTSD (Southwick et al., 1999). Serial sampling revealed sustained increases in CSF NE 
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concentrations and increased CSF NE responses to psychological stressors in PTSD (Geracioti et 

al., 2001; Geracioti et al., 2008). Taken together, increased CNS NE activity plausibly 

contributes to features of PTSD, including hyperarousal, increased startle, and encoded fear 

memories(Strawn & Geracioti, 2008).  

Interestingly, prospective studies have shown that increased heart rate and peripheral 

epinephrine excretion at the time of exposure to trauma predict subsequent development of 

PTSD (Delahanty & Nugent, 2006; Yehuda, et al., 1998). Remarkably, administration of the 

centrally acting β adrenergic blocker propranolol shortly after exposure to psychological trauma 

has been reported to reduce PTSD symptom severity and reactivity to reminders of the traumatic 

event (Pitman et al., 2002). Although this did not prevent the development of PTSD, it may have 

blocked traumatic memory consolidation (Brunet et al., 2008), and therefore may reduce the 

severity or chronicity of PTSD. Various anti-adrenergic agents have been tested for their 

therapeutic efficiency in the treatment of PTSD in open label trials, though there is a paucity of 

controlled trials (Strawn & Geracioti, 2008).  

It should be noted that increased urinary excretion of DA and its metabolite has been 

reported for patients with PTSD. At the CNS level, mesolimbic DA plays a critical role in the 

processing of rewards. DA has also been implicated in fear conditioning. There is evidence in 

humans that exposure to stressors induces mesolimbic DA release, which in turn may impact on 

HPA axis responses. Whether or not the CNS DA system is altered in PTSD remains unclear, 

though genetic variations in the DA system have been implicated in moderating risk for PTSD. 

Serotonin. Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine 

neurotransmitter synthesized from the amino acid tryptophan. Serotonergic neurons originate in 

the dorsal and medial nuclei raphé in the brainstem and project to multiple forebrain regions, 
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including the amygdala, bed nucleus of the stria terminalis, hippocampus, and PFC. This 

indoleamine has roles in regulating sleep, appetite, sexual behavior, aggression/impulsivity, 

motor function, analgesia, and neuroendocrine control. It also has been implicated in the 

pathophysiology of mood and anxiety disorders and in the modulation of affective and stress 

responses. The direction of the modulatory effects of 5-HT on affective and stress responses 

depends on stressor intensity, brain region, and receptor type. It is believed that 5-HT neurons of 

the dorsal raphé projecting to the amygdala and hippocampus mediate anxiogenic (stress-

increasing) effects via 5-HT2receptors, whereas 5-HT neurons from the median raphé exert 

anxiolytic effects, facilitate extinction, and suppress encoding of learned associations via 5-

HT1A receptors. Chronic exposure to stressors induces upregulation of 5-HT2 and downregulation 

of 5-HT1A receptors, respectively, in animal models. 5-HT1A receptor knockout mice exhibit 

increased stress responses. The 5-HT system interacts with the CRF and NE systems in 

coordinating affective and stress responses (Ressler & Nemeroff, 2000; Vermetten & Bremner, 

2002). Indirect evidence suggests a role of 5-HT in the pathophysiology of PTSD, including 

symptoms of impulsivity, hostility, aggression, depression, and suicidality. Most important 

concerning a role of 5-HT circuits in PTSD is the demonstrated partial efficacy of the SSRIs as 

treatments. However, though their use is indeed recommended in many current treatment 

guidelines the Institute of Medicine concluded that there is insufficient evidence for the efficacy 

of the approved medications for PTSD, Sertraline and Paroxetine (Institute of Medicine (U.S.). 

Committee on Treatment of Posttraumatic Stress Disorder., 2008).  

Other evidence for altered 5-HT neurotransmission in PTSD includes decreased serum 

concentrations of 5-HT, decreased density of platelet 5-HT uptake sites, and altered 

responsiveness to CNS serotonergic challenge (Ressler & Nemeroff, 2000; Vermetten & 

Bremner, 2002). However, no differences in CNS 5-HT1A receptor binding were detected in 
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patients with PTSD compared to controls using positron emission tomography (PET) imaging 

(Bonne et al., 2005). Taken together, altered 5-HT transmission may contribute to symptoms of 

PTSD such as hypervigilance, increased startle, impulsivity, and intrusive memories.  

GABA/Benzodiazepine Receptor System. Gamma-aminobutyric acid (GABA) is the 

principal inhibitory neurotransmitter in the CNS. GABA exerts anxiolytic effects and dampens 

behavioral and physiological responses to stressors, in part by inhibiting the CRF/NE circuits 

involved in mediating fear and stress responses. GABA acts on GABAA receptors, part of the 

GABAA/benzodiazepine (BZ) receptor complex. Uncontrollable stress has been shown to lead to 

alterations in the GABAA/BZ receptor complex. Treatment with BZ, GABA agonists, or GABA 

reuptake inhibitors decreases symptoms of anxiety in PTSD, suggesting that the GABA/BZ 

system may be involved in the pathophysiology of PTSD. Patients with PTSD exhibit decreased 

platelet BZ binding sites (Gavish et al., 1996). Single photon emission computed tomography 

and PET imaging studies revealed decreased BZ receptor binding in the cortex, hippocampus and 

thalamus of patients with PTSD. These results suggest that decreased density or affinity of the 

BZ receptor may play a role in PTSD (Bremner et al., 2000; Geuze et al., 2008). However, 

treatment with BZs after exposure to psychological trauma does not prevent PTSD (Gelpin, 

Bonne, Peri, Brandes, & Shalev, 1996). Although there are multiple studies implicating the 

GABA/BZ receptor system in anxiety disorders, studies in PTSD are relatively sparse (Strawn & 

Geracioti, 2008). 

Glutamate/NMDA Receptor System. Glutamate is the primary excitatory 

neurotransmitter in the CNS. Exposure to stressors and the release or administration of 

glucocorticoids increases glutamate release in the brain. Glutamate binds to several so-called 

excitatory amino acid receptors, one of which is the N-methyl-D-aspartate (NMDA) receptor. 
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The glutamate/NMDA receptor system has been implicated in synaptic plasticity, learning, and 

memory, including the well studied phenomenon of long term potentiation (LTP), the extended 

excitation of neural circuits, leading to long-lasting enhancement in communication between 

neurons. This process is believed in part to underlie the process of conditioning and memory 

consolidation. LTP plausibly contributes to consolidation of trauma memories in PTSD. Of note, 

the partial NMDA-receptor antagonist D-cycloserine has been shown to improve the extinction 

of fear in rodents and in phobic patients undergoing exposure therapy. D-cycloserine has been 

shown in many studies to enhance learning of many types including extinction learning (Choi, 

Rothbaum, Gerardi, & Ressler, 2010; Kaplan & Moore, 2011). Whether or not D-cycloserine  is 

effective in enhancing the outcome of exposure therapy in PTSD remains to be studied (Davis, 

Ressler, Rothbaum, & Richardson, 2006). In addition to its role in learning and memory, 

overexposure to glutamate is associated with excitotoxicity, and plausibly could contribute to a 

loss of neurons in the hippocampus and PFC in PTSD. Of note, elevated glucocorticoids increase 

the expression and/or sensitivity of NMDA receptors, which may sensitize the brain to 

excitotoxic insults.  

Neuropeptide Y. Neuropeptide Y (NPY) is a neuropeptide with anxiolytic and stress-

buffering properties. NPY has been shown to inhibit CRF/NE circuits involved in stress and fear 

responses and reduces the release of NE from sympathetic nerve cells. A relative lack of NPY 

may promote maladaptive stress responses and contribute to the development of PTSD. Indeed, 

patients with PTSD have been reported to exhibit decreased plasma NPY concentrations and 

blunted NPY responses to yohimbine challenge compared to controls, suggesting that decreased 

NPY activity may contribute to noradrenergic hyperactivity in PTSD (Rasmusson et al., 

2000). However, it has been suggested that NPY may be involved in promoting recovery from or 
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resilience to PTSD because combat veterans without PTSD have been demonstrated to exhibit 

elevated plasma NPY levels compared to veterans with PTSD (Yehuda, Brand, & Yang, 2006). 

Opioids. Endogenous opioids, such as the endorphins, enkephalins and dynorphins are 

endogenous neuropeptides that act upon opiate receptors (which can also be activated by 

synthetic or naturally occurring opiates like morphine or heroin). Endorphins work as an agonist 

at and have a high affinity for mu receptors but also act at and have a slightly lower affinity for 

kappa receptors. β-Endorphin is a cleavage product of pro-opiomelanocortin (POMC), which is 

also the precursor hormone for  adrenocorticotropic hormone. Dynorphins act primarily through 

the kappa receptor but can have some activity through mu receptors. Enkephalins are divided in 

to leu-enkephalin which work through delta type opioid receptors and met-enkephalin which 

works through mu and delta receptors. Alterations in endogenous opioids have been postulated to 

be involved in symptoms of numbing, stress-induced analgesia, and dissociation in PTSD (Heim 

& Nemeroff, 2009). Endogenous opioids further exert inhibitory influences on the HPA axis as 

evidenced by attenuated stress induced release of  NE in the thalamus, hypothalamus, 

hippocampus, amygdala and midbrain when rats were pre-treated with morphine (Tanaka et al., 

1983). Opiate effects may occur through a reduction in the firing of the LC and may explain 

heroin’s alleviation of the hyperarousal symptoms of some PTSD patients (Bremner, Southwick, 

Darnell, & Charney, 1996).  Heroin addicted individuals in comparison with healthy volunteers 

have been shown to exhibit significantly lower levels of adrenocorticotropic hormone, as well as 

have reduced levels HPA axis activation in response to a stressor (Gerra et al., 2004; Ho et al., 

1977). Naloxone, an opiate receptor antagonist, increases HPA axis activity by blocking an 

inhibitory opioidergic influence on hypothalamic CRF secretion, and patients with PTSD have 

been reported to exhibit an exaggerated HPA axis response to naloxone. Interestingly, naloxone 
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also has been shown to reverse the analgesia of PTSD patients after exposure to traumatic 

reminders. Also, PTSD patients exhibit increased CSF β-endorphin levels, suggesting increased 

activation of the endogenous opioid system. Interestingly, the opiate receptor antagonist, 

naltrexone, has been reported to be effective in treating symptoms of dissociation and flashbacks 

in traumatized patients (Newport & Nemeroff, 2000; Strawn & Geracioti, 2008). Finally 

administration of morphine has been linked to a reduction in risk of the development of PTSD 

(Bryant, et al., 2009; Holbrook, et al., 2010; Nixon, Nehmy, et al., 2010; Stoddard, et al., 2009).  

Several clinical studies show a relationship between morphine administration and a 

reduction in PTSD risk (Nixon, Ellis, et al., 2010). In one, the medical records of 696 injured 

U.S. military personnel without serious traumatic brain injury were analyzed, in cases where 

morphine was administered during early resuscitation and trauma care, 61% of patients 

developed PTSD as opposed to 76% of patients who did not receive morphine(Holbrook, et al., 

2010).. Results were similar in a sample of 48 adolescents who were examined within 4 weeks of 

an injury that led to hospital treatment. Morphine administration was associated with dose 

dependent reductions in PTSD diagnosis at a 6 month follow-up assessment (Nixon, Nehmy, et 

al., 2010). This result was repeated in a different sample of 90 7-17 year olds assessed in an 

identical manner (Nixon, Nehmy, et al., 2010; Stoddard, et al., 2009) and in an additional sample 

of 120 trauma victims  assessed at 3 months post event (Bryant, et al., 2009).  These studies 

show that there is a positive relationship between the dose of morphine administered and a 

decrease in likelihood of developing PTSD. In sum, these results also show that this relationship 

exists in humans of diverse ages and trauma sources. There are at least three possible 

mechanisms by which opioids may protect against PTSD; reducing pain, preventing memory 

consolidation, and modulation of HPA axis activity. 
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Opioids exert pain relief through the activation of specific membrane receptors. There are 

three major subtypes of receptors, mu, kappa, and delta, which are located in diverse areas of the 

central nervous system (Kanjhan, 1995). The brain contains multiple endogenous opioid 

peptides: enkephalins, dynorphins, and endorphins. These peptides are released into the brain 

and blood following stress or pain (Akil et al., 1984). Both endogenous opioid peptides 

mentioned above and exogenous opioid peptides (produced outside the body either botanically or 

chemically) can relieve pain.  Some literature suggests that pain relief may be the primary 

mechanism by which morphine may reduce PTSD risk. The relief of pain may make the trauma 

less stressful (Stoddard, et al., 2009). 

Opioids have been repeatedly shown to affect and regulate memory. This is accomplished 

physiologically by beta-endorphin’s release after exposure to a novel situation. This state 

dependent effect is reversible by mu antagonists like naloxone. This occurs in several brain areas 

including the amygdala. In addition to this state dependant effect, administration of mu opioid 

agonists reduces memory retention, which may be due to an amnesiac effect (Izquierdo et al., 

1980).For example, in healthy human volunteers subtle working memory impairments were 

found in women following both oxycodone and morphine administration (Friswell et al., 2008). 

In a preclinical model, a pre-training single administration of morphine has been observed to 

decrease the spatial memory acquisition in Morris water maze task in rats (Farahmandfar, 

Karimian, Naghdi, Zarrindast, & Kadivar, 2010). Therefore, morphine may have memory effects 

that prevent conditioning of traumatic stimuli. 

The kappa opioid receptor (KOR) system has also been highly characterized with regards 

to stress. The data supports that the kappa system influences and can be influenced by stress. A 

variety of studies and reviews support endogenous opioid peptide systems involvement in the 

mediation, modulation, and regulation of stress responses. Specifically the kappa opioid receptor 
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subtype has been characterized regarding its role in stress (Bruchas, Land, & Chavkin, 2010). 

The widespread distribution of enkephalin throughout the limbic system is consistent with the 

kappa receptor system playing a direct role in the modulation of the stress response (Drolet et al., 

2001). Kappa opioid receptor antagonists have been found to block the aversive behaviors 

brought on by forced swim (Beardsley, Howard, Shelton, & Carroll, 2005) and inescapable 

footshock stress (Land et al., 2008).  Opioid analgesics, though mostly active at mu receptor 

subtypes, often act at other receptor subtypes like kappa. Thus it is important to investigate 

kappa compounds as well as analgesics like morphine to help us understand if opioid stress 

interactions are a part of morphine’s protective effect. 

Psychological Approaches to the Treatment of PTSD 

 There are a large variety of psychological approaches to treating PTSD that may be used 

singly or in conjunction. The most widely used of these  treatments are based on the concepts 

and traditions of cognitive behavioral therapy (Sharpless & Barber, 2011).  Pharmacotherapy 

approaches mentioned previously are often explored in addition to these psychological therapies. 

 Prolonged exposure. The foundations of prolonged exposure are closely related to 

extinction learning and are intended to modify the memory processes first changed in the 

traumatic exposure. The treatment usually consists of 8-15 weekly 90-minute sessions. There are 

three main components; visualization and examination of traumatic memories, discussion and 

examination of these memories along with in vivo exposure to trauma related stimuli and 

situations in a safe controlled environment (Sharpless & Barber, 2011). The prolonged exposure 

treatment method has the most data supporting its treatment efficacy as well as being one of two 

treatments currently used by the Veterans Administration (VA) (Powers, Halpern, Ferenschak, 

Gillihan, & Foa, 2010).  Exposure therapy can also be modeled in preclinical assays and is more 
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effective when given in close temporal proximity to the initiating event. Mice, which were given 

extinction therapy 24h after and one month after Pavlovian conditioning, had reduced freezing 

behavior relative to controls, but only those given therapy at the 24h after time point showed a 

reduction in  hyperarousal symptoms (Golub, Mauch, Dahlhoff, & Wotjak, 2009). 

Cognitive processing therapy. Though some components of cognitive processing 

therapy have similarities to cognitive behavioral therapy as well as prolonged exposure the 

treatment focuses on self-blame (Resick & Schnicke, 1992). The exposure component of 

cognitive processing therapy is written rather than mental imagery. Specifically, clients are 

instructed to write about their traumatic events in detail, review them daily and share them aloud 

during sessions. The clients are assisted in labeling feelings and working through “stuck points” 

in the narratives. The focus of this review is to process individual components of the experience 

and how each makes them feel and think about the events (Sharpless & Barber, 2011). Cognitive 

processing therapy has very good data supporting its use in PTSD (Forbes et al., 2012), and it 

was chosen as the other psychological treatment to be extensively “rolled out” through the VA 

system. 

Eye movement desensitization and reprocessing .This treatment combines elements of 

cognitive behavioral therapy, mindfulness, body-based approaches, and person-centered 

therapies. It is clinically guided by the Adaptive Information Processing Model (Shapiro & 

Maxfield, 2002) that proposes that traumatic memories in PTSD are unprocessed and are not 

stored as memories, but are treated as if they were new sensory inputs. There are eight phases of 

treatment in eye movement desensitization and reprocessing, of which the most unique are 

termed desensitization and reprocessing (when clients hold distressing images in mind while 

tracking rhythmic finger movements of the clinician), the installation of positive cognitions 
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(during which fingers are tracked while holding positive cognitions in mind), and journaling 

(Shapiro & Maxfield, 2002). 

Stress inoculation training. Initially developed to manage anxious symptoms the group 

of techniques known as stress inoculation training  (relaxation, thought stopping, in vivo 

exposure to feared situations)  has been subsequently adapted to PTSD and other specific 

disorders (E. B. Foa, Rothbaum, Riggs, & Murdock, 1991).  Stress inoculation training has been 

shown to be moderately effective in reducing PTSD symptoms, though eye movement 

desensitization and reprocessing is slightly more effective (Lee, Gavriel, Drummond, Richards, 

& Greenwald, 2002). More study should be done to discover which components are key to its 

success due to inconsistent data (Edna B. Foa & International Society for Traumatic Stress 

Studies., 2009). 

Exposure therapy using virtual reality .With the advancements in technology we now 

have the ability to use virtual exposure to stimuli instead of imagined or in vivo. Exposure 

therapy using virtual reality may include convincing visual stimuli, 3D sound, smells, and a 

general feeling of immersion in traumatic situations (Rothbaum, Rizzo, & Difede, 2010). This 

treatment has been used with Iraq veterans in 19 military centers, and has seen some modest 

success, especially with veterans who have difficulty with visualizing trauma or talk therapy 

(Rothbaum, et al., 2010). 

Relaxation training. Relaxation training may have been the earliest behavioral treatment 

used for PTSD, and consists of using various techniques (e.g., successive tension and relaxation 

of muscles) in order to reduce the fear and anxiety associated with traumatic responses. It has 

been used as a standalone treatment (often as a control) and as a component of broader PTSD 

treatments. Relaxation training has been used in four randomized clinical trials, and while 
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certainly effective, it is not as effective as more comprehensive treatment packages (Sharpless & 

Barber, 2011). 

Cognitive behavioral group therapy. This treatment is as its name suggests cognitive 

behavioral therapy in a group setting. While this treatment approach has been shown to be 

effective, it has not been shown to be significantly better than other nonspecific treatment control 

groups (Schnurr et al., 2003).  

In summary, of the psychological therapies described here (i.e., those which have 

undergone the most empirical testing), prolonged exposure, cognitive processing theory, and eye 

movement and desensitization and reprocessing possess the most evidence in favor of their 

efficacy and utility with veterans (Sharpless & Barber, 2011). However, these therapies are not 

effective in many cases and many patients are still refractory (Hetrick, et al., 2010).  As 

described previously pharmacotherapies are also not effective in a large number of cases. This 

leaves considerable room for improvement in treatment development. It is important to 

understand how different drug treatments like opiates affect fear behavior so that better 

treatments or combination therapy approaches can be developed.  

Preclinical Models of PTSD 

While the complexity of psychiatric disorders like PTSD cannot be fully replicated in a 

preclinical assay, there are many existing preclinical assays that can be used to model key parts 

of the disease.  Some of these preclinical models observe and record well explored behaviors in 

animals and how those behaviors might change in relation to stress. Other preclinical PTSD 

models are newer adaptations of existing assays like fear potentiated startle, which combines an 

associative learning component with a startle reflex two components now understood to  be a 

part of PTSD’s disease mechanism.  There are different approaches to creating a preclinical 

PTSD model (i.e. stress/trauma initiated, mechanism based, neurobiological system and genetic 
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based)(Shiromani, LeDoux, & Keane, 2009).  There are benefits and limitations on each 

approach, it is important to understand the approaches and how they impact the conclusions that 

can be drawn from the resulting data.  

Neurobiological systems models of PTSD. Neurobiological models seek to initiate 

biological systems changes (including the HPA axis) that mimic those that occur in PTSD 

patients. Changes in neuroendocrine function and arousal that are characteristic of PTSD can be 

induced by single prolonged stress exposure in rats. Decreased neural activity in the prefrontal 

cortex, increased neural activity in the amygdala complex, and reduced neuronal integrity in 

the hippocampus is associated with PTSD (Knox, Perrine, George, Galloway, & Liberzon, 

2010). The single prolonged stress exposure models recreate to some extent these aspects of 

PTSD. 

Genetic model approaches to PTSD. The availability of the fully sequenced mouse 

genome and the tools to manipulate that genome (gene knock-out, transgenic and gene silencing) 

give us great tools to approach genetic influences in many disease states. The difficulty with 

PTSD and many other psychiatric disorders is that there is no single gene or small group of 

genes wholly responsible for the disorder.  The picture that seems to be arising both from clinical 

and preclinical studies is that there are genes which give rise to a certain predisposition for 

developing a disorder given the addition of a certain environmental events.  As described above, 

there are many systems involved in the body’s complex stress response. Therefore, many genetic 

and likely epigenetic factors are involved in the vulnerability for developing PTSD. At this point 

in time, distinct genetic models do not exist for PTSD (Schmidt, Holsboer, & Rein, 2011).  

Trauma/Stress initiated models of PTSD. Trauma/Stress initiated models of PTSD. 

These assays seek to employ an initiating stress or trauma to represent the criterion A (direct 

personal experience of an event that involves death, injury, or a threat to the physical integrity) 
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of PTSD. This approach can include a physical stressor or a psychosocial stressor like predator 

exposure. In addition, ethologically relevant stressors, such as predator exposure, produce lasting 

increases in stress-related behavior and levels of corticosterone in plasma. Reports also 

indicate habituation is less likely to occur with repeated exposure to a predator than with 

repeated exposure to different stressors such as restraint (Plata-Salaman et al., 2000). While these 

models are functional and provide data at the behavioral level, many do not shed light on 

underlying brain mechanisms that are responsible for producing this behavior.  

Mechanism based models of PTSD. The trauma or stress initiated models do a good job 

of modeling short term stress behavior, but do not translate completely to the persistence and 

resistance of symptoms present in the disorder.  The fear conditioning paradigm mirrors the 

learning and memory processes that occur in humans during traumatic exposure and displays 

many signs that can be directly correlated to those seen in PTSD (E. B. Foa & Kozak, 1986; 

Maren, 2001).  In the mouse, Pavlovian fear conditioning (PFC) is observed by the animal 

freezing in place. This freezing behavior is a natural response to threat (Cantor, 2009). A mouse 

is put into a test chamber and exposed to an aversive stimulus (i.e. shock) that is paired with a 

neutral stimulus (i.e. white noise) and the mouse then associates the light with the shock. During 

Pavlovian fear conditioning this association between an aversive stimulus and accompanying 

neutral stimuli is formed via activation of various brain areas including the hippocampus and 

amygdala (Kim & Jung, 2006; Maren, 2008). The associative memory processes activated during 

this type of conditioning have also been observed in humans through imaging studies in PTSD 

patients (Bremner, 2004; Bremner, et al., 2005).   

Multiple symptoms, both behavioral and biological, found in PTSD patients are modeled 

by PFC. Mice that are exposed to PFC show hippocampal volume changes that are similar to 

PTSD patients.  After undergoing an inescapable footshock reduced hippocampal volume is 
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observed in mice (Golub et al., 2011). PTSD patients also show reduced hippocampal volume 

(Bremner, et al., 1995; Bremner, Randall, et al., 1997; Gurvits, et al., 1996; Stein, et al., 1997). 

Hyperarousal is another symptom observed in this preclinical model, as well as, clinical PTSD 

patients (Harrington et al., 2012).  Mice display hyperarousal after PFC (Golub, et al., 2009) this 

hyperarousal is sensitive to extinction training. Exaggerated startle response is observed in PTSD 

patients (Asmundson & Carleton, 2010).  PFC results in a similar increased response and the 

study of this specific response uses PFC prior to startle assays and is now known a the fear 

potentiated startle assay (Smith et al., 2010).  Symptomatology in PTSD is long lasting, with 

some patients having unresolved symptoms decades after their initial diagnosis (Bremner, et al., 

1996; Malta, Wyka, Giosan, Jayasinghe, & Difede, 2009).  The changes in behavior and brain 

structures persist for longer than 4 weeks in this preclinical model (Li, Murakami, Wang, Maeda, 

& Matsumoto, 2006). 

The behavioral and biological similarity to posttraumatic stress disorder displayed by this 

particular assay, Pavlovian Fear Conditioning, makes it especially attractive to use when 

investigating specific pharmacological interventions. The ability to manipulate through 

pharmacological intervention or conditioning to fear responses or extinction make the type of 

data that can be generated by this assay especially diverse and informative in the context of a 

specific receptor system. The range of symptoms represented, in addition to the biological 

similarities of PFC to PTSD, provide a strong preclinical model that would more than likely be 

able to detect candidate compounds for the treatment of PTSD. 
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Rationale 

Post Traumatic Stress Disorder (PTSD) is an anxiety disorder that affects over 7.7 million 

adults and carries an estimated societal cost of $6.2 billion. This prevalence and therefore the 

cost of PTSD is increasing. Current treatments for PTSD include psychotherapy (e.g., exposure 

therapy) and pharmacotherapy (e.g., antidepressants). Although there are a wide variety of 

therapies that have been used and new ones are being developed, there is still no clear treatment 

approach that does not leave a large portion of patients still suffering or that have spontaneous 

reoccurrences of symptoms.  

Our increased knowledge about PTSD has revealed that there is dysregulation of many 

neurotransmitter systems in patients diagnosed with the disorder. One of the systems that is 

affected is the endogenous opioid system. In addition independent analyses of medical records 

indicate that exogenous opiate administration (morphine) may have a protective affect against 

PTSD.  Opioid analgesics, including morphine and fentanyl, are often administered as a response 

to trauma. Since opioids, both endogenous and exogenous, influence neurological processes that 

we know are affected in those with PTSD it is important to study how these compounds exert 

this effect. This is a novel PTSD treatment avenue that has not yet been explored. 

Preclinical models of psychiatric disorders are established tools that can be used to reveal 

mechanisms, etiology, treatments and many other important factors of these disorders. Pavlovian 

fear conditioning is believed to model the memory processes that take place in PTSD 

development and has clear parallels to many of its symptoms. The open field assay can be a 

measure of both anxiety and avoidance behaviors while serving as a control to indicate if tested 

compounds have sedative or stimulant effects not related to fear.  

 



www.manaraa.com

 
 

29 
 

I propose using the preclinical assays Pavlovian fear conditioning and the open field to 

illuminate the effects of opioids on fear behavior that models PTSD. 

Because of the clinical observations involving morphine administration and PTSD; 

I hypothesize that opioid compounds with mu opiate receptor (MOR) agonist properties 

will decrease fear behavior in both open field and Pavlovian fear conditioning.  

Also, because of previous research involving KOR antagonists;  

I hypothesize that compounds with KOR antagonist properties will decrease fear 

behavior in both the open field and Pavlovian fear conditioning.  

. 
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Methods Experiment I 

The following is the first of two experiment methods; this project is broken into two 

halves with similar assays with changes to methods described chronologically.  The first 

experiment as described below was a two day fear conditioning procedure where data was 

obtained for both cued and contextual fear conditioning. Post fear testing animals were also 

placed into the open field where their locomotor activity was measured. Several KOR ligands 

were tested along with vehicle controls.  

Subjects 

Two hundred forty eight adult male C57BL/6J mice were obtained at approximately 8 

weeks of age weighing 21-25 g (The Jackson Laboratory, Bar Harbor, ME) and were allowed to 

acclimate to the vivarium for approximately one week prior to commencement of testing. An 

N=8 was used for each experimental group (for each drug dose and its vehicle group). The mice 

were housed at a maximum of four per cage in an AAALAC-accredited animal facility with food 

(7012 Teklad LM-485 Mouse/Rat Sterilizable Diet, Harlan Laboratories, Inc., Indianapolis, IN) 

and water available ad libitum under a 12-h/12-h light/dark cycle (lights on at 0600 h to 1800 h) 

with all testing occurring during the light phase. All procedures were carried out in accordance 

with the “Guide for the Care and Use of Laboratory Animals” (Institute of Laboratory Animal 

Resources, National Academy Press, 1996) and were approved by the Institutional Animal Care 

and Use Committee of Virginia Commonwealth University. 

Drugs 

The kappa opioid receptor (KOR) antagonists norbinaltorphimine (NorBNI) and (3R)-7-

hydroxy-N-((1S)-1-[[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl]-2-

methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide (JDtic) (RTI International, 
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Research Triangle Park, NC) were administered 24H prior to training or testing as specified in 

results.  While naloxone, morphine, buprenorphine, fentanyl HCL, U50,488, enadoline and 

diazepam (obtained from the National Institute on Drug Abuse, Rockville, MD) were 

administered 20min prior to testing.  All drugs were dissolved in sterile 0.9% saline with the 

exception of diazepam (which was dissolved in 10% w/v 2-Hydroxypropyl-β-cyclodextrin 

(Sigma-Aldrich, St. Louis, MO) 90% sterile 0.9% saline). All drugs were injected 

subcutaneously in a volume equivalent to 10 ml/kg body weight. 

 Choice of drugs and doses tested. Benzodiazepines (used clinically as adjunctive 

treatments for PTSD) produce anxiolytic effects in the assays proposed here (Fraser et al., 2010; 

Sanger & Joly, 1985). For example, in the mouse, diazepam (0.54 mg/kg) reduced margin time 

in an open field assay (Fraser, et al., 2010). Also, in the mouse, diazepam (0.52 mg/kg) reduced 

duration of freezing in response to the conditioned stimulus in the PFC assay (Sanger & Joly, 

1985; Smith, et al., 2010). Therefore, I propose using diazepam (0.1, 0.3, 0.56, and 1.0 mg/kg) as 

my control anxiolytic drug in these assays for experiment one.   

The opioid drugs proposed below have a variety of binding affinities, with the 

benzodiazepine diazepam serving as the control comparison. The doses proposed are drawn from 

literature as cited and when possible from the same or similar behavioral assays in C57BL/6 

mice.  More specifically, morphine (0.1, 1.0, 3.0 and 10 mg/kg) and fentanyl (0.001, 0.01, and0.1 

mg/kg) both have a high affinity for the MOR, where they act as agonists (Minami et al., 2009).  

MOR antagonist naloxone (0.1, 1.0, and 10 mg/kg) has a high affinity for MOR, though it has 

antagonist action at all subtypes of opioid receptor (Middaugh, Kelley, Cuison, & Groseclose, 

1999) . Clinically, morphine and fentanyl are both used by the US armed services medical corps 

in the field for pain relief of injured personnel (Burnam, Meredith, Tanielian, & Jaycox, 

2009)and so are especially relevant to ongoing influence on PTSD.  The compounds U504880 
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(0.1, 1.0, and 10 mg/kg), enadoline (0.0001, 0.001, 0.01, and 0.1 mg/kg) (KOR agonists), and 

NorBNI (1.0, 10, 30 mg/kg) (KOR antagonist) have high binding affinity at the KOR which we 

have shown previously can effect stress related behaviors (Beardsley, et al., 2005; Bruchas, 

Land, Lemos, & Chavkin, 2009; Wang et al., 2009). The remaining drug buprenorphine (0.3, 1, 

and 3 mg/kg) has partial agonist activity at MORs and antagonist activity at KORs (Lelong-

Boulouard et al., 2006). These drugs each represent either activation or inhibition of MORs and 

KORs as well as mixed MOR activation/KOR antagonism. This selection of drugs represents 

different actions that might underlay opioid influence on fear behavior.  

Apparatus 

Fear conditioning measurements for Experiment I were conducted using two 

commercially supplied, Near Infrared Video Freeze Systems controlling a total of seven 

individual test chambers (MED-VFC-NIR-M, Med Associates). Each test chamber consisted of a 

clear polycarbonate top and front, white acrylic back, and stainless steel sides, with a shockable 

grid floor (32 cm wide, 25 cm high, 25 cm deep; Med Associates Part Number VFC-008), 

enclosed in a white, sound-attenuated box (63.5 cm wide, 35.5 cm high, 76 cm deep; NIR-

022MD), equipped with a speaker in the side wall. A proprietary light source (Med Associates 

NIR-100) provided near-infrared light (NIR; 940 nm). Video images of the behavioral sessions 

were recorded at a frame rate of 30 frames per second (640 × 480 pixels, downsampled within 

the driver to 320 × 240 pixels; about 1 pixel per visible mm2) via an IEEE 1394a (Firewire 400) 

progressive scan CCD video camera (VID-CAM-MONO-2A) with a visible light filter (VID-

LENS-NIR-1) contained within each chamber and connected to a computer in the same room. 

Parameters for scoring were set to define freezing behavior as absence of movement for  1/15th 

second, and percent freezing was derived in real time from the video stream by computer 

software (Video Freeze; SOF-843) running on a Windows computer. 
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Locomotor measurements for Experiment I were conducted in eight commercially 

obtained, automated activity monitoring devices each enclosed in sound- and light-attenuating 

chambers that recorded distance travelled in cm in 10-m bins via computer-controlled circuitry 

(AccuScan Instruments, Columbus OH). The interior of each device was divided into separate 

20x20x30 cm arenas permitting the independent and simultaneous measurement of two mice. 

Sixteen photobeam sensors per axis were spaced 2.5 cm apart along the walls of the chamber and 

were used to detect movement. 

Procedure 

The procedure used in Experiment I was synthesized following a review of broad 

methodologies published in the fear conditioning literature. A summary table of these methods is 

included in Table 1. This literature review revealed 32 unique sources or labs which had 

published at least two separate papers involving mouse fear conditioning.  The parameters of 

most interest are habituation time, unconditioned stimuli time, aversive stimuli intensity and 

time, inter-trial interval used and number of trials.  
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Table 1 

Reference 
Habituation 
(Event #1) 

Unconditioned
Stimulus  

(Event #2) 

Aversive 
Stimulus 

(Event #3) 
Shock 

Intensity ITI 
trial

# 

Abel, 2006 120 s 30 s 2 s 0.7m A N/A 1 

Adams, 2002 140 s 20 s 1 s 0.7 mA 60 s 3 

 Anagnostaras, 2011 120 s 30 s 2 s 0.77 mA N/a 1 

Anderson, 2010 N/A 30 s 1 s 0.6 mA 20-180 s 4 

Barad, 2005 120 s 120 s 2 s 0.7 mA 120 s 2 

Cain, 2004 120 s 120 s 2 s 0.7 mA 120 s 5 

Caldarone, 2000 120 s 30 s 2 s 0.5 mA 120 s 3 

Comery, 2005 120 s 15 s  2 s 1.5 mA 120 s 2 

Corbo, 2002 180 s 20 s 3 s 0.75 mA 60 s 3 

Davies, 2004 240 s 33 s 3 s 0.75 mA 60 s 3 

Davis,2005 120 s 30 s 2 s 0.57 mA 120 s 2 

Fanselow, 2010 180 s 20 s 2 s 0.5 mA 180 s 3 

Gulick, 2007 120 s 30 s 2 s 0.57 mA 120 s 2 

Heldt, 2007 300 s 30 s 2.5 s 0.4 mA 210 s 5 

Holmes, 2008 180 s 30 s 2 s 0.6 mA 60-90 s 2 

Imaki, 2009 300 s 20 s 1 s 1.0 mA 60 s 3 

Kleppisch, 2008 180 s 30 s 2 s 0.7 mA N/A 1 

Lattal, 2011 148 s 30 s 2 s 
0.5-3.0 

mA N/A 1 

Lattal, 2007 120 s 30 s 2 s 0.7 mA 90 s 4 

MacAulay, 2010 300 s 30 s 0.25 s 0.4 mA 120 s 5 

Maren, 2009 180 s 10 s 1 s 1.0 mA 70 s 5 

Minichiello, 2009 120 s 30 s 2 s 0.5 mA 120 s 2 

Nguyen, 2002 120 s 30 s 2 s 0.7 mA N/A 1 

Oitzl, 2011 180 s 20 s 2 s 0.4 mA 60 s 6 

Palmiter, 2011 120 s 5 s 2 s 0.3 mA 40 s 100 

Pape,2003 120 s 10 s 1 s 0.2 mA N/A 1 

Seidenbecher, 2011  120 s 9 s 1 s 0.45 mA ? 3 

Singewald, 2011 120 s 120 s 2 s 0.7 mA 120 s 5 

Tonegawa,2007 240 s 20 s 2 s 0.75 mA 120 s 2 
Vargas-Irwin, 

unpublished data 120 s 20 s 2 s 0.7 mA 60 s 3 

Wemmie, 2011 180 s 20 s 2 s 0.75 mA 120 s 5 
 

The habituation used by 80% of sources was 120 s long at the beginning of the first 

session. The most common unconditioned stimuli were white noise (65%) or tone (25%). Shock 

was almost universally (98%) used as the aversive stimuli.  Inter-trial intervals (ITI) were much 
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more varied with 120 s being used 50% of the time while 60 s was being used 40% of the time. I 

combined these most commonly used parameters for the use in the initial fear conditioning 

procedure.  This procedure consisted of Conditioning (Day 1) with Context and Cue tests (Day 

2) that occurred across two, consecutive days. During Conditioning (Day 1), mice were placed in 

the fear conditioning chambers and after a 2 m baseline period, three tone-shock pairings were 

administered (60 s ITI), consisting of a 30 s white noise (80 dBA) co-terminating with a 2 s 

scrambled footshock (0.70 mA, RMS, AC constant current) delivered through the grid floor, 

followed by a 2 m rest period. Mice were then returned to their home cages. Each chamber floor 

was then removed and replaced with a fresh unit and the chamber walls were cleaned with 

unscented non-alcohol germicidal wipes (Sani-Cloth HB) prior to the next experimental session. 

The next day during Context test (Day 2), mice were placed in the chambers and exposed to the 

previous conditioning context for 5 m (without tone or shock deliveries) and then returned to 

their home cage. Floors were changed and interiors were cleaned as above. New cage floors were 

inserted along with white opaque plexi-glass pieces which made the floor smooth and the walls a 

continuous curve. After 20 m had elapsed the mice were placed in this altered context for the 

Cue test.  Subjects were presented with a 2 m baseline period, three 30-s white noise (80 dBA) 

noise presentations (60s ITI), followed by a 2 m rest period. Mice were then returned to their 

home cage.  

The locomotor procedure for part one of the experiments was conducted immediately 

following the measurement of cue fear testing. Mice were removed from the fear conditioning 

test chamber and moved across the room to the locomotor measurement chambers. Movement 

was measured continuously and binned every 10 m for a total of 60 m then animals were placed 

back into home cages.  Variables recorded during this procedure were Total Distance traveled 

(cm) and time spent (s) in the center and edges of the open field.  
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Data Analysis 

Freezing was defined in parameters to be the absence of movement for 3 frames at a 

sample rate of 30 frames per second; 1/10th of a second. Percent of time spent freezing was 

calculated relative to the rest of the session time and was used as the main dependent variable. It 

was recorded for the first 2 mof Conditioning as well as the first 5 m of Context Exposure and 

Test. More specifically, the first 2 m of initial chamber exposure freezing was calculated and 

used as a baseline measure.  Freezing was calculated during the first five minutes of the Context 

Exposure session and is presented as a test of contextual freezing. Two-way repeated measures 

ANOVA followed by a Dunnett’s  Test was used to compare percent freezing during the baseline 

measurement with those of the Context Exposure and Test sessions to determine if conditioning 

occurred, and was used to compare the experimental groups (dosage groups) with their vehicle 

controls to evaluate drug effects. An N=8 was used for each experimental group. This N was 

determined to have 90% power to detect a difference of means ≥ 12.00 in percent contextual 

freezing with a significance level (alpha) of 0.05 (one-tailed) calculated from results of a 

preliminary study comparing 10 mg/kg norBNI with vehicle-treated mice (N=8/group) (StatMate 

2.0, GraphPad Software, Inc., 2004). All comparisons were considered statistically significant 

when P<0.05 and were conducted using commercial software (Prism 5.0c, GraphPad Software, 

Inc., 2004). 

Initially, as an independent check of equipment accuracy, two observers hand scored the 

time spent freezing of a group of 8 mice on 3 consecutive days post fear conditioning. Freezing 

was defined to the observers as absence of movement except for respiration. Each observer 

obeserved the mice in real time and recorded time in seconds subjects spent freezing using a 

stopwatch. The time was totaled and divided by the total session time of 300 s to produce a 

percent freezing.  The machine display was blocked so the observer was blind to the machine 
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score during their recording of the session. The machine scores for these same mice were 

compared to the two observers’ scores.  A two-way ANOVA with repeated measures on both 

factors (observer and time) was conducted with simple effects between observers compared 

within each time period using a post-hoc, pair-wise Holm-Sidak test adjusted for multiple testing 

assuming one family for all tests (Prism 6 for Mac OSX, Version 6.0a.152, GraphPad Software 

Inc., San Diego, CA). There were no main effects for observer F(2,14)=3.370, p>0.05; or for 

time F(2,14)=1.1797, p>0.05. There was also no interaction between observer and time 

F(4,28)=0.5436, p>0.05. This indicates that the machine scoring of mouse freezing using the 

settings described above was consistent with observational measures of freezing.  

 For locomotor measurements during experiment one, distance travelled (cm) was 

subjected to analysis by a one-way ANOVA (4 levels of drug dose) followed by a Dunnett’s 

Post-Hoc Test comparing drug doses to the vehicle control group.  Separately, time (s) spent in 

the center vs edge of the open field was analyzed via one-way ANOVA (4 levels of drug dose) 

with a Dunnett’s Post-Hoc Test comparing drug doses to the vehicle control group.  All 

statistical tests were conducted using computer software (Prism 5d for Macintosh, GraphPad 

Software, Inc., San Diego, CA), and all types of comparisons were considered statistically 

significant if p<0.05.  

 

Results Experiment I 

Preliminary studies for environment one. 

 Pilot Group. The percent freezing for the pilot group (N=8) varied significantly from 

baseline in both contextual, F(2, 21) =5.907, p<0.001, and cue, F(2, 21) = 28.38, p<0.0001, tests. 

Group differences indicated freezing was significantly higher than baseline in context (p < 0.05) 
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and cue (p< 0.001) tests. While freezing was significantly lower during extinction for both 

context (p < 0.05) and cue (p< 0.001) tests (Figure 1). 

 

Figure 1. Fear Conditioning Pilot group. 

This figure illustrates successful fear conditioning and extinction. Percent freezing during 

context and cue tests are significantly higher than baseline. Percent freezing after 

extinction training is significantly lower in both context and cue extinction conditions. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 JDtic and Control Groups. The percent freezing for the JDtic and control groups (N=8) 

varied significantly among the three different conditions, in both contextual, F(2,21)= 6.222, 

p<0.01, and cue, F(2,21)=9.416, p<0.0001, tests. Both initial and repeated time points are within 

subject and group differences indicated that the vehicle no shock control group froze 

significantly less than JDtic and vehicle only during the initial context test (p<0.0001) and not 

during the continued time course tests. While there was no significant difference between vehicle 

and JDtic contextual freezing at any time point (Figure 2).            
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Figure 2. Contextual Fear Conditioning JDtic and Control groups. 

This figure illustrates that administration of the KOR antagonist JDtic increased 

contextual percent freezing more than vehicle or vehicle no shock at all time points 

except for the initial test day. The vehicle no shock group had significantly lower 

freezing than both JDtic and Vehicle treated groups on the initial test day. Significance is 

denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 Group differences for the cue freezing tests indicated that the vehicle no shock group 

froze significantly less (p< 0.001) than JDtic-treated groups at all time points measured except at 

baseline. The vehicle group froze significantly less (p< 0.05) than JDtic-treated groups on Day 7 

while showing no difference to no shock at the same time point (Figure 3). 
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Figure 3. Cue Fear Conditioning JDtic and Control groups. 

This figure illustrates that administration of the KOR antagonist JDtic increased cue 

percent freezing more than vehicle no shock at all time points. The JDtic treated group 

froze significantly more than either vehicle group on day 7. The vehicle no shock group 

had significantly lower freezing than both JDtic and Vehicle treated groups on all days 

but day 7. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 NorBNI and Control Groups. The percent freezing for the NorBNI treated and control 

groups (N=8) varied significantly among the three different conditions, in both contextual, 

F(4,35)=17.918, p<0.0001, and cue, F(3,45)=9.416, p<0.0001, tests. Group differences indicated 

that the contextual freezing of the no shock vehicle group was significantly lower (p< 0.001) 

than the vehicle group only on the initial test day. While among the different NorBNI dosage 

groups (1, 10 and 30 mg/kg) on the initial test day, 1 and 10 mg/kg produced significantly higher 

(p<0.001) freezing than either vehicle group or 30 mg/kg norBNI.  The 10 mg/kg NorBNI group 
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had significantly higher freezing than all other groups on Days 7 (p<0.001) and 14 (p<0.001). 

There were no significant differences between groups’ freezing on Day 21 (Figure 4).  

 
 

Figure 4. Context Fear Conditioning NorBNI and Control groups. 

This figure illustrates that the administration of KOR antagonist norBNI significantly 

increased contextual freezing on the initial test day at 1 mg/kg and 10 mg/kg doses as 

compared to vehicle. The 10 mg/kg dose of norBNI increased contextual freezing during 

the 7 and 14 day time points as compared to vehicle. While the vehicle no shock treated 

group showed significantly less freezing than all other groups only on the initial test day. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 Group differences indicated that the cued freezing of the no shock vehicle group was 

significantly lower (p< 0.001) than the vehicle group only during the Day 7 test. There were no 

significant differences amongst the different groups treated with NorBNI (1, 10 and 30 mg/kg) 

on the initial test day there were no significant differences. On Day 7 doses of 1 and 30 mg/kg 

produced significantly lower (p<0.001) freezing than vehicle treatment.  On Day 14, the 10 
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mg/kg NorBNI treated group had significantly higher freezing than the other dosage groups of 

NorBNI but not the vehicle treated group (p<0.001). While on Day 21, NorBNI 30mg/kg 

displayed significantly higher freezing than vehicle treated groups (Figure 5).  

 

Figure 5. Cue Fear Conditioning NorBNI and Control groups. 

This figure illustrates that administration of the KOR antagonist norBNI increased cued 

percent freezing more than vehicle or vehicle no shock only on day 14 (10mg/kg dose). 

The vehicle no shock group had significantly lower freezing than both norBNI and 

Vehicle treated groups on the day 7 only. While cue percent freezing was lower in the 

norBNI 30mg/kg treated group only on day 7.  Significance is denoted by * p<0.05, 

**p<0.01, and *** p<0.001. 

Noise disturbances and stress assays. The initial pilot work for the project took place in 

the fall semester of 2009 on the 6th floor of the R. Blackwell Smith Jr. Building. This 

information is significant because the kappa antagonist testing along with their control groups 

were tested starting in mid January of 2010, which is the month that VCU started an extensive 

renovation of the 1st, 2nd, and 5th floors of the R. Blackwell Smith Jr. Building. The vivaria for 

all subjects were located on the basement level of this same building. Construction in the 
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building took place both during working hours (0800-1700h) as well as after hours (1701-

2000h). During the renovation on several separate occasions noise levels were measured in the 

lab space at as high as 85 dBA but ranging between 61–75 dBA during working hours (Scosche 

SPL 1000F 135DB Max SPL Meter) during the week of January 31-February 4, 2010.  

 The decibel levels measured in the lab space did not take into account sound frequencies 

that were below or above the human range of hearing that could also have been present during 

the use of the construction equipment. Previous research examining the detrimental effects of 

construction noise on breeding in mice and the difference in perception of construction noise 

show that mice are especially vulnerable to behavioral changes after exposure to such noise. 

Swiss Webster female mice that were exposed to 70, 80, or 90 dBA of cutting saw noise during 

the 1st, 2nd, or 3rd week of gestation had significantly higher numbers of stillborn pups regardless 

of the time of noise exposure (Rasmussen, Glickman, Norinsky, Quimby, & Tolwani, 2009). 

Further research that examined the perception of construction noise by different lab species 

including humans concluded that mice were significantly more likely to be adversely affected by 

and more likely to perceived construction noise that would go unnoticed by human workers 

(Norton, Kinard, & Reynolds, 2011). It is also likely that this noise could act as additional 

stressful stimuli that are beyond the control of the experimenter. This construction noise 

therefore introduced a confound that was likely to make data interpretation of the anxiety assays 

difficult if not impossible. The initiation of this construction and its possible influence on the 

anxiety assays was supported by the conflicting kappa pilot testing. This led me to the conclusion 

that either, tests would be put on hold until the completion of construction or equipment would 

need to be relocated to a new lab space.  

Control studies from environment two. 
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 The decision was made that since additional lab space was available and construction on 

the R. Blackwell Smith Jr. Building would continue for many months that the fear conditioning 

equipment would be moved to the nearby but unconnected Hunter Holmes McGuire Hall Annex.  

Once equipment was reinstalled and recalibrated new control groups were tested in environment 

two so that the methods could be revalidated in the absence of construction noise confounds.  

  The initial test groups completed in environment two were to test both the 

conditioning method’s effectiveness in the new environment and to serve as shock and no shock 

controls.  Two groups were treated with vehicle and underwent conditioning only for one group 

the shock wasn’t administered. There were no significant differences in baseline freezing 

behavior. The groups were clearly different in both the context and cue tests on Day 2. 

Conditioning for the no shock group did not significantly increase conditioned freezing behavior. 

The shock group had significant increases in conditioned freezing. This is indicative of 

successful conditioning methods. This is supported by the data from original pilot group before 

noise confounds were introduced. Once these control groups were complete before additional 

testing took place there was much further thought about control procedures and additional assays 

available in the new environment.  

 In environment two lab space there were several open field locomotor apparatuses. The 

open field as previously mentioned is thought to model anxiety by utilizing rodents’ instinctive 

fear of open spaces and brightly lit environments (Archer, 1973; Rasmusson & Charney, 1997).  

For example, in the mouse, more time spent in open or well-lit space is thought to indicate less 

anxiety (Belzung & Griebel, 2001).  Additionally the open field can be used as a measurement of 

the changes in locomotor activity related to the suppression or activation of locomotion. This 

second function of the open field is important as some of the drugs of interest in the fear 

conditioning assay have known effects on locomotor behavior. Since fear conditioning measures 
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conditioned immobility or freezing, drugs which effect the animals’ ability to locomote could 

confound the data measured in this assay. It was decided that this second assay would give a 

second layer of anxiety data as well as serve as a control for locomotor effects, and so would be 

administered after fear testing. 

 

Control data for environment two. 

Fear control group. New control groups were analyzed showing that vehicle shock and 

vehicle no shock control groups percent freezing  differed significantly from each other F(2,14) 

=74.67, p< 0.001. Further, bonferroni post hoc tests indicated that the vehicle shock group 

showed significantly higher freezing in both contextual (p<0.001) and cue (p<0.001) tests while 

their baseline levels of freezing did not differ (Figure 6).  

 

 

Figure 6. Fear Conditioning Control groups. 

45 
 

This figure shows the significantly higher level of contextual and cue percent freezing 

during testing for vehicle groups that were exposed to shock when compared to vehicle 

no shock treated groups. Significance is denoted by * p<0.05, **p<0.01, and *** 

p<0.001. 
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Kappa Agonist Groups (acute).The KOR agonist enadoline showed significant effects 

on freezing behavior, F(3,26)= 75.04, p<0.001. Enadoline significantly increased percent 

freezing during cue testing compared to vehicle at all doses tested (p<0.001). Further, enadoline 

increased freezing in contextual testing at both 0.01 and 0.1mg/kg (p<0.001) (Figure 7). 

 

Figure 7. Fear Conditioning Enadoline groups. 

This figure shows the significant dose dependant increase in freezing to both context and 

cue during FC testing after the administration of KOR agonist enadoline when compared 

to vehicle. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

Enadoline significantly affected locomotor behavior, F(3,26)= 29.96, p<0.001. Mice 

given 0.001 and 0.01mg/kg enadoline spent significantly more time in the center of the open 

field (p<0.001). The highest dose of enadoline 0.1 mg/kg significantly reduced total distance 

traveled in the open field (p<0.001) (Figure 8).  
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Figure 8. Enadoline Open Field. 

This figure shows the significant dose dependant decrease of total distance traveled after 

the administration of KOR agonist enadoline, as well as the significant dose dependant 

increase in time spent in the center of the open field when compared to vehicle treated 

groups. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 The effects of an additional kappa agonist U50,488 were also analyzed in fear 

conditioning and open field.  When U50,488 was administered there were significant effects on 

freezing behavior, F(3,28)=12.64, p<0.001. U50,488 significantly increased percent freezing  

during contextual and cue testing at10 mg/kg, the highest dose tested compared to vehicle 

(p<0.001). Further, U50,488 also increased freezing during contextual testing at 0.1mg/kg 

(p<0.001) (Figure 9). 
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Figure 9. Fear Conditioning U50,488 groups. 

This figure shows the significant increase in freezing to both context (0.1 & 10 mg/kg) 

and cue (10 mg/kg) during FC testing after the administration of KOR agonist U50,488 

when compared to vehicle. Significance is denoted by * p<0.05, **p<0.01, and *** 

p<0.001. 

 

The KOR agonist U50,488, significantly affected locomotor behavior, F(3,28)= 5.354, 

p<0.001. All doses of U50,488 significantly decreased the time spent in the center of the open 

field (p<0.001) relative to vehicle control levels. The highest dose of U50,488  10 mg/kg 

significantly reduced total distance traveled in the open field (p<0.001) (Figure 10).  
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Figure 10. U50,488 Open Field. 

This figure illustrates the significant decrease in total distance traveled (10 mg/kg) and 

the significant decrease in time spent in the center of the open field (all doses) for  

U50,488 treated groups when compared to vehicle treated groups. Significance is denoted 

by * p<0.05, **p<0.01, and *** p<0.001. 

 

Kappa Opioid Receptor Antagonist (acute).The KOR antagonist NorBNI was 

examined and showed significant effects on freezing behavior, F(3,28) 2.021, p<0.001. NorBNI 

significantly decreased percent freezing  during contextual testing compared to vehicle at 10 

mg/kg (p<0.001). The KOR antagonist did not significantly affect cued percent freezing s 

(Figure 11).   
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Figure 11. Fear Conditioning NorBNI groups. 

This figure shows the dose dependant decrease in freezing to context during FC testing 

after the administration of KOR antagonist norBNI (10 mg/kg) when compared to vehicle 

treated groups. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 The KOR antagonist affected locomotor behavior in the open field F(3,28) 1.434, 

p<0.001. All doses of NorBNI tested significantly reduced time spent in the center of the open 

field (p<0.001) but did not significantly affect total distance traveled (Figure12). 

 

Figure 12. NorBNI Open Field. 
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This figure illustrates the significant reduction in time spent in the center of the open field 

in NorBNI treated groups when compared to vehicle. Significance is denoted by * 

p<0.05, **p<0.01, and *** p<0.001. 

 

 Benzodiazepine/GABAA agonist. The benzodiazepine diazepam was tested and had a 

significant effect on percent freezing, F(4,15)= 8.255, p<0.001. Contextual percent freezing 

increased significantly after administration of 0.56 or 1.0 mg/kg diazepam (p<0.01 and p<0.001 

respectively) compared to vehicle administration. However, cue freezing increased significantly 

only at 1.0 mg/kg diazepam (p<0.001)(Figure 13).  

 

Figure 13. Fear Conditioning Diazepam Groups. 

This figure illustrates the significant increase in contextual (0.56 & 1 mg/kg) and cue (1 

mg/kg) percent freezing during FC testing in diazepam treated groups when compared to 

vehicle treated groups. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 Locomotor behavior in the open field was affected significantly by diazepam, F(4,15)= 

9.074., p<0.001. The total distance traveled significantly decreased after administration of the 1.0 

51 
 



www.manaraa.com

 
 

mg/kg diazepam dose (p<0.001). There were no significant effects of diazepam on center time 

compared to vehicle (Figure 14).  

 

Figure 14. Diazepam Open Field. 

This figure illustrates the significant reduction in total distance traveled in the diazepam 

1.0 mg/kg treated group when compared to vehicle treated groups. Time spent in the 

center of the open field for diazepam treated groups was not significantly different from 

vehicle treated groups. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 Kappa Opioid Agonist Group (7 days after administration). The same enadoline 

groups were tested for contextual and cue fear conditioning as well as open field locomotor 7 

days after the original administration of drug and fear conditioning training.  There were no 

significant differences between the enadoline treated groups and vehicle treat group in percent 

freezing F(3,48)=3.129, p>0.05.  There were, however, still significant differences between 

enadoline treated groups and vehicle treated group in the open field. Enadoline treated groups 

spent significantly less time in the center of the open field, F(3,48)=20.19, p<0.001 (Figure 15) 
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at all doses tested 0.001 mg/kg (p<0.001), 0.01mg/kg (p<0.05) and 0.1 mg/kg (p<0.001). 

Although, there were no significant differences in total distance traveled between groups.   

 
 

Figure 15. Enadoline Open Field. 

This figure illustrates the significant reduction in time spent in the center of the open field 

is still present 7 days after the administration of enadoline when compared to vehicle 

treated groups. No significant changes in total distance traveled was present at the 7 day 

test point for enadoline treated groups when compared to vehicle treated groups.  

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

The same U50,488 groups were tested for contextual and cue fear conditioning as well as 

open field locomotor 7days after the original administration of drug and fear conditioning 

training.  There were no significant differences between the enadoline treated groups and vehicle 

treatment group in percent freezing F(3,56)=2.45, p>0.05.  There were, however, still significant 

differences between U50,488 treated groups and the vehicle treated group in the open field. 

U50,488 treated groups spent significantly less time in the center of the open field, 

F(3,56)=7.247, p<0.0001 (Figure 16) at all doses tested 0.1 mg/kg (p<0.001), 1mg/kg (p<0.001) 
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and 10 mg/kg (p<0.05). Although, there were no significant differences in total distance traveled 

between groups. 

 

Figure 16. U50,488 Open Field. 

This figure illustrates the significant reduction in time spent in the center of the open field 

for U50,488 treated groups, when compared to vehicle treated groups,  is still present 7 

days after administration. No significant lasting reductions to total distance traveled were 

observed at the 7 day test point. Significance is denoted by * p<0.05, **p<0.01, and *** 

p<0.001. 

 

Discussion Experiment I 

Pilot and control data from environment one. 

 The significant differences between baseline context and extinction groups in the original 

pilot animals show that the initial methods result in effective conditioning of both contextual and 

cued fear in C57BL/6J mice. Further manipulation of methods was not attempted at this time and 

additional control groups for testing kappa receptor compounds were completed.  

The next compound investigated was the kappa receptor antagonist JDTic along with two 

vehicle control groups; one control group with the aversive stimulus present (vehicle shock) and 
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one with no aversive stimulus present (vehicle no shock).  JDTic did not significantly reduce 

contextual freezing and only significantly reduced cued freezing at the 7 day test point. These 

results were disappointing given the anti-stress effects previously noted in other paradigms with 

this compound. However, more troubling than the lack of JDTic’s effects was the somewhat 

erratic results of the control groups which showed no differences to one another on several time 

points, even though one control group did not receive any exposure to the aversive shock stimuli.  

Concurrent testing of a full dose effect curve of the different kappa receptor antagonist 

NorBNI with two similarly treated control groups resulted in the exacerbation of freezing 

behavior and also showed similar overlap between the shock and no shock vehicle groups.  

NorBNI significantly increased freezing behavior to both the conditioning context and cue at 

certain time points. The most interesting result was the dramatic increase in freezing behavior in 

the vehicle no shock control group to the conditioned cue on all but one time point tested.   

Acute kappa modulation of fear behavior. 

 The kappa agonist enadoline significantly increased freezing in both cue and context 

conditions when administered subcutaneously prior to testing. This increase in freezing was dose 

dependant and occurred at doses where locomotor behavior was not significantly lower than 

vehicle. The highest dose tested significantly reduced the total distance traveled in the open field.  

While, a significant increase in the amount of time the animals spent in the center of the open 

field was observed at the intermediate and highest dose. The two different assays results support 

the anxiogenic profile of enadoline, and show that it specifically exacerbates conditioned 

freezing in C57BL/6J mice. Acute enadoline administration produces changes in locomotor 

behavior consistent with increased anxiety.  

 The kappa agonist U50,488 was also tested in both Pavlovian fear conditioning and the 

open field.  The results with U50,488 were similar to those produced by enadoline though 
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slightly more erratic. There was significant exacerbation of freezing indicative of anxiogenic 

affect. Conversely, locomotor behavior indicated more time was spent in the center of the open 

field, which is normally interpreted to mean less anxiety. Again, both results occurred at doses 

that did not suppress locomotion. The highest dose tested of U50,488 suppressed locomotion and 

this marked suppression may explain the conflicting results with increased center time. The 

animals are normally placed in the center of the open field at the beginning of the test session. It 

is possible that their locomotion was so reduced that instead of moving to the edge of the open 

field as is normally observed, the mouse could not move from the center at all. This could also be 

interpreted as freezing in the fear conditioning test and so it is important to note this when trying 

to interpret data from this assay when locomotion is suppressed by the test compound.  

 The kappa antagonist norBNI was administered immediately after training due to its 

unique pharmacokinetics and testing took place as normal on day two.  There was a significant 

decrease in freezing behavior at the intermediate dose tested but only in contextual freezing, 

cued freezing was not affected. Interestingly, total distance traveled was not affected but animals 

spent significantly less time in the center of the open field. This conflicting result between the 

two assays was the first sign that the current method of measurement, while serving as a control 

for gross locomotor effects, may not be an accurate measure of anxiogenic effects.  

The kappa data may indicate that the open field when run as a within subjects assay after 

fear conditioning may be affected as much by the fear conditioning procedure as it is by the test 

compounds. There are also indications that at doses where locomotion is affected that freezing 

behavior and locomotor suppression may be indistinguishable in the Pavlovian fear conditioning 

assay. This shows that controlling for locomotor confounds is important in interpreting this data. 

This confound concern becomes more apparent when testing a benzodiazepine.  

Acute benzodiazepine modulation of fear behavior. 



www.manaraa.com

 
 

57 
 

 The benzodiazepine and GABAA agonist diazepam was tested and significantly 

exacerbated freezing behavior in both contextual and cued conditions. However context fear was 

affected at the intermediate dose while cue was affected only by the highest dose tested.  

Additionally, locomotor behavior shifted away from the center of the open field with significant 

reductions in total distance traveled at the highest dose tested. The data from both assays seem to 

indicate that acutely diazepam, at the doses tested, contrary to expectations produces anxiogenic 

effects.   

Diazepam has long been used as an anxiolytic drug in humans (trade name Valium®) and 

shows similar effects in other mammals including mice (Boissier, Simon, & Aron, 1968). Further 

exploration of the literature show that the anxiolytic effects of diazepam and other 

benzodiazepines are sensitive to prior experience in the testing context in other anxiety assays 

like elevated plus maze and light dark box (Holmes, Iles, Mayell, & Rodgers, 2001; Rodgers & 

Shepherd, 1993). Prior experience in the anxiety inducing test environment lessens the anxiolytic 

effects of diazepam (Holmes, et al., 2001; Rodgers & Shepherd, 1993). This may be the effect 

we are observing here as the Pavlovian fear conditioning methods depend on the previous 

conditioning of the test environment paired with an aversive stimulus prior exposure is necessary 

before testing.   

The conflicting and unexpected data resulting from these two assays in conjunction was 

of concern. Locomotor effects were important confounds to control for and yet the second assay 

using the open field was not yielding results which clarified the data. Instead the open field used 

as a within subject assay seemed to further complicate the data. Groups were tested under the 

acute influence of drug effects which included the possible confound of locomotor suppression. 

In an attempt to clarify the effects of the acute drug exposure on fear behavior without the 

confounding locomotor suppression testing was conducted again in the kappa agonist groups 
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when the animals were in a non-drug state one week post conditioning, in the groups that had 

already undergone testing.  

Lasting changes to baseline locomotor behavior. 

 There were no lasting significant effects to conditioned freezing behavior. The open field 

still showed a significant reduction of the time spent in the center area. This implies a lasting 

increase to basal levels of anxiety. The vehicle groups did not display the lasting changes and 

instead showed an almost equal distribution of time spent in the center verses the edge of the 

open field.  However, it is impossible to conclude that this change to level of anxiety like 

behavior is due completely to the administration of the kappa agonists alone. It may have been a 

combination of the anxiogenic activation of the kappa system in conjunction with the 

conditioning that led to this change. It also may have been the combination of the kappa 

activation and the pre-exposure to the locomotor chambers. These data suggest that an 

interaction occurred in one of three ways. Either, the drug effected locomotor behavior directly 

obscuring freezing data interpretation. The fear conditioning training effected locomotor 

behavior. Or the pre-exposure to the locomotor or conditioning context had an effect on final 

testing.  

The overall change in baseline behavior well after drug exposure is fascinating. The 

investigation of fear conditioned animals in a non-drug state after drug exposure is important in 

the context of PTSD in that the phenomenon is long lasting and subject to spontaneous 

reoccurrence. In further study regarding modifying methods to remove locomotor confounds as 

well as incorporate a non-drug state a publication by Cain, et al. (2004) seemed to offer better 

methods choices. There was a test day comparable to my original methods, extinction exposure 

training, and an additional non-drug test period (Cain, Blouin, & Barad, 2004).   

Transition to new methods. 
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 I decided to adopt procedures that were a synthesis of both the Cain procedure and my 

original methods. This synthesis of procedures allowed for a direct comparison of my previous 

data (Day 2) as well as a data point free of drug locomotor influence (Day 3). An additional gain 

by using these procedures was the exposure learning extinction component. While the day three 

extinction measures gave a non-drug state data point, it was also after an extended exposure to 

the training environment. This adds to the preclinical model a data point that could be used as a 

comparison to drug administration during exposure therapy in clinical settings. While this model 

uses rodents, it has been observed that the same memory processes (Siegmund & Wotjak, 2006) 

that occur during extinction learning are mirrored in humans and that the extinction of 

conditioned fear has served as the explicit model for behavior therapy of human anxiety 

disorders (Craske, 1999; Davis, 2011; Wolpe, 1969). The process of the progressive weakening 

of the conditioned response by repeated presentations of CS without the US, is the basis of 

exposure therapy (Cain, et al., 2004).  This added component can be used to postulate not only 

the mechanism of opioids influence on fear but how use of these analgesics could impact 

treatment of PTSD. 

 Within the new procedures approach I decided to concentrate on the contextual fear 

component (though there is one measurement of cue fear effects).  The brain areas involved in 

contextual fear conditioning are primarily the hippocampus and the amygdala (Anagnostaras, 

Gale, & Fanselow, 2001). Infusion of the NMDA receptor antagonist D,L-2-amino-5-

phosphonovaleric acid (APV) into the hippocampus is sufficient to block the acquisition of 

contextual fear (Young, Bohenek, & Fanselow, 1994). The local infusion of APV into the 

basolateral amygdala blocks the acquisition of tone or contextual fear (Campeau, Miserendino, & 

Davis, 1992; Fanselow & Kim, 1994; Maren, Aharonov, Stote, & Fanselow, 1996). Lesion 

studies support the necessary involvement of both these brain areas and the connections between 
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them, high-frequency stimulation of the pathways carrying information from the hippocampus to 

the amygdala produces LTP, and lesions of these projections selectively block the acquisition of 

contextual fear (Maren, 1996; Maren & Fanselow, 1995). 

 Opioids have been linked to inhibition of major neurotransmitters in the hippocampus 

and the amygdala (Wagner, 1996).  Mu agonists have been shown to inhibit the release of 

norepinephrine and acetylcholine in the hippocampus (Jackisch, Geppert, Brenner, & Illes, 1986; 

Jackisch, Geppert, & Illes, 1986; Werling, Brown, & Cox, 1987). Kappa agonists have also been 

shown to inhibit the release of both norepinephrine and acteylcholine (Jackisch, Geppert, 

Brenner, et al., 1986; Jackisch, Geppert, & Illes, 1986; Werling, et al., 1987). Using a mossy 

fiber synaptosomal preparation, very high concentrations of kappa agonist could inhibit both 

dynorphin and glutamate release (Gannon & Terrian, 1991). The decision to focus on contextual 

fear after the change in methods I believe is well supported by the known distribution of opioid 

receptors in both the hippocampus and amygdala as well as the interconnected functions of these 

two brain areas. It is further supported by the evidence of the suppression by opioids of key 

neurotransmitters like glutamate and norepinephrine that are involved in the learning process 

(Gannon & Terrian, 1991; Jackisch, Geppert, Brenner, et al., 1986; Jackisch, Geppert, & Illes, 

1986; Werling, et al., 1987). 

 Another change in the new methods is the use of a measurement of level of movement 

while the animals are in the conditioning chambers, the motion index. As explained in the data 

analysis portion of methods the motion index is the number of pixels that have changed within a 

designated time period more than they would change if the mouse was not present (i.e., video 

noise).  A calibration is run at the beginning of each session prior to the subject being placed in 

the chamber and that video is used with that session as the comparison video. In other words 

each session has its own individual reference video used as the baseline control.  Since this 
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motion index is being generated in chamber during the fear sessions this removes some 

confounds associated with measuring locomotor behavior post session in a different 

environment. One reason locomotor testing was introduced was the concern for drug induced 

locomotor effects.  However, I found that measurement of those effects in a new environment 

some time after drug administration and conditioning made for interesting if difficult to interpret 

data. The data indicate that there was an impact on locomotor activity; however, it is difficult to 

know if this difference was due to the conditioning or the drug administration. Another concern 

was the difference in drug time course. Initially locomotor activity was measured after both test 

session had already occurred so a minimum of 51 minutes had elapsed since drug administration. 

While this may not be a problem for some of the longer acting drugs it is certainly possible that 

the drug would no longer be acting centrally by the time locomotor was measured. The motion 

index when used as a measurement of general movement can be indicate overall levels of 

activity during the conditioning and test sessions which removes the concern of drug time course 

and measurement in a new environment.  
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Rationale Experiment II 

Change in Methodology. 

Refining locomotor activity measurements. During the measurement and analysis of 

part one of experiments several challenges which complicated and possibly confounded data 

interpretation were recognized. The first of these challenges was the interpretation of locomotor 

data. Animals were first tested in the Near Infrared Video Freeze Systems, and then placed in the 

Open Field for locomotor measurements. This initiated two concerns. One was the change of 

context in which the animals’ behavior was being measured. Previous reports indicate that 

contextual cues specifically influence the severity of freezing behavior and that measurement in 

a novel context can be used to measure the degree of generalizability of the conditioned fear 

response (Gonzalez, Quinn, & Fanselow, 2003).  In changing the context that locomotor 

behavior is measured in, the data are less clearly interpreted with regard to the fear conditioning 

tests. The second challenge is the possibility that the fear conditioning has, in itself, modified 

basal levels of open field locomotor activity. Though there are no direct data in mice showing a 

modification of open field activity by fear conditioning, it has been shown that activity in these 

two assays share genetic framework (Sokoloff, Parker, Lim, & Palmer, 2011). The proposed 

change in methods would use a movement measure that is recorded during the fear conditioning 

session, which would remove this concern. Additionally, the time course in which the 

components of the experiments take place (20 m, 40 m and 47 m post injection) give rise to the 

concern that there are different amounts of central drug activity taking place during the fear tests 

than is taking place during the locomotor tests. With these challenges in mind I shifted to using 

the Motion Index analysis described below.  
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Refining contextual fear measurements. A second concern was that in working with 

both cue and contextual fear tests it became clear that the drugs administered were having 

differential effects in the two tests. While both sets of results were interesting and continued 

exploration of the cue fear response is warranted, I chose to focus on contextual fear 

conditioning in a new modified procedure. These methods were based on the methods in a report 

that focused not only on acute contextual fear but on drug effects during both acute contextual 

freezing and a measure of extinction (Cain, et al., 2004). This additional testing condition occurs 

in an absence of acute drug activity. The new methods outlined below provide a measurement of 

contextual freezing and the influence of drugs administered before this test that is comparable to 

the previous methods. Additionally the animals are exposed to the conditioning context that is 

then measured as a level of extinction learning and how it was affected by the drug 

administration. This testing occurs in a non-drug state and provides data on the effects of acute 

drug administration while avoiding the complication of acute drugs effects on movement. Also, 

as described above, contextual fear conditioning involves the hippocampus as well as the 

amygdala. One of the ways I postulate opioids may be influencing fear behavior by their effects 

on learning itself, this would most likely involve a hippocampus-dependant mechanism. Based 

both on the preliminary data with the experiments in part one, as well as a desire to more closely 

replicate the methods presented in (Cain et al., 2004) I chose to focus on contextual freezing of 

Pavlovian fear conditioning.  

I hypothesize that opioid compounds with MOR agonist properties will decrease fear 

behavior in Pavlovian fear conditioning and facilitate extinction. 

Also, because of previous research involving KOR antagonists;  

I hypothesize that compounds with KOR antagonist properties will decrease fear 

behavior in Pavlovian fear conditioning and facilitate extinction.  
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Methods Experiment II 

The following is the second of two experiment methods.  The second experiment as 

described below is a three day fear conditioning procedure where data were obtained for 

contextual fear conditioning and its extinction. Animal’s activity was measured in real time in 

the fear conditioning chambers. Several KOR ligands and MOR ligands were tested along with 

vehicle controls.  

Subjects 

Four Hundred sixty four adult male C57BL/6J mice were used in Experiment II with all 

other aspects of their treatment remaining the same as in Experiment I.  

Drugs 

The KOR antagonist norbinaltorphimine (NorBNI) (RTI International, Research Triangle Park, 

NC) was administered 24H prior to training or testing as specified in results.  While naloxone, 

morphine, buprenorphine, fentanyl HCL, U50,488, enadoline and diazepam (obtained from the 

National Institute on Drug Abuse, Rockville, MD) were administered 20min prior to testing.  All 

drugs were dissolved in sterile 0.9% saline with the exception of diazepam (which was dissolved 

in 10% w/v 2-Hydroxypropyl-β-cyclodextrin (Sigma-Aldrich, St. Louis, MO) in 90% sterile 

0.9% saline). All drugs were injected subcutaneously in a volume equivalent to 10 ml/kg body 

weight. 

Choice of drugs and doses tested. Drugs used in experiment two are justified in the 

methods for experiment one. All is the same with the exception of the removal of JDtic and 

diazepam from testing.  

Apparatus 
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Fear conditioning measurements for Experiment II as well as locomotor measurements 

for Experiment II were conducted using two commercially supplied, Near Infrared Video Freeze 

Systems as described in Experiment I.  

Procedure 

The procedure used in Experiment II was a modification of those described in (Cain, et 

al., 2004) and consisted of a Conditioning (Day 1), Context Exposure (Day 2) and a Test (Day 3) 

that occurred across three, consecutive days. During Conditioning (Day 1),mice were placed in 

the fear conditioning chambers and after a 2-min baseline period, three tone-shock pairings were 

administered (60s ITI), consisting of a 30-s white noise (80 dBA) co-terminating with a 2-s 

scrambled footshock (0.70 mA, RMS, AC constant current) delivered through the grid floor, 

followed by a 2-min rest period. Mice were then returned to their home cages. Each chamber 

floor was then removed and replaced with a fresh unit and the chamber walls were cleaned with 

unscented non-alcohol germicidal wipes (Sani-Cloth HB) prior to the next experimental session. 

The next day during Context Exposure (Day 2), mice were placed in the chambers and exposed 

to the previous conditioning context for 20 m (without tone or shock deliveries) and then 

returned to their home cage. During the Test on Day 3, mice were placed in the chambers for 5 

min as a measurement of the extinction of contextual freezing. Percent freezing was recorded as 

the dependant variable and was analyzed as is described in the next section.  

Locomotor measurements during part two of testing were simultaneously recorded along 

with freezing and are presented as the Motion Index (MI). The MI represents a general activity 

level of the animal and is used as a measure to control for direct motor effects of the drugs being 

tested. As a control for drug effects only the MI on Day 2 was analyzed (this period directly 

followed drug administration). This Index was recorded as a dependant variable and was 

computed and analyzed as described in the next section.  
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To ascertain the persistence of drug effects on extinction, time course testing was 

conducted. This testing used the same methodology as described above with a Conditioning (Day 

1), Context Exposure (Day 2) but with varied durations before the Test day. For the drug 

enadoline the dose (0.1 mg/kg) which significantly facilitated extinction was tested using 

separate groups of mice for each time point test day. The different time points were Day 3, Day 

7, and Day 14. Drug administration occurred just as with previous methods preceding Context 

Exposure on conditioning Day 2. 

A time course of effects was also generated for the norBNI dose (30 mg/kg) which 

significantly facilitated extinction. Due to the unique pharmacokinetics of norBNI(Endoh, 

Matsuura, Tanaka, & Nagase, 1992) drug administration occurred immediately post conditioning 

on day 1 and the time course was extended to include Day 21 and Day 28 test groups. 

Data Analysis 

Freezing was defined to be the absence of movement for 3 consecutive frames at a sample rate of 

30 frames per second; 0.10 of a second. Percent of time spent freezing was calculated relative to 

the rest of the session time and was used as the main dependent variable. It was recorded for the 

first 2 m of Conditioning as well as the first 5 m of Context Exposure and 5 m on Day 3 Test. 

More specifically, the first 2 m of initial chamber exposure freezing was calculated and used as a 

baseline measure. Freezing was calculated during the first 5 m of the Context Exposure session 

and are presented as a test of contextual freezing and the five minutes of test on Day 3 are 

recorded and presented as a test of extinction of contextual freezing. Two-way repeated measures 

ANOVA followed by a Dunnett’s  Test were used to compare percent freezing during the 

baseline measurement with those of the Context Exposure and Test sessions to determine if 

conditioning occurred, and was also used to compare the experimental groups(dosage groups) 

with their vehicle controls to evaluate drug effects. An N=8 was used for each experimental 
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group. This N was determined to have 90% power to detect a difference of means ≥ 12.00in 

percent contextual freezing with a significance level (alpha) of 0.05 (one-tailed) calculated from 

results of a preliminary study comparing 10 mg/kg norBNI with vehicle-treated mice 

(N=8/group) (StateMat 2.0, GraphPad Software, Inc., 2004). All comparisons were considered 

statistically significant when p<0.05 and were conducted using commercial software (Prism 5.0c, 

GraphPad Software, Inc., 2004). 

 For locomotor measurement during part two of experiments, were conducted via a 

proprietary motion analysis algorithm that was used to generate a Motion Index from the digital 

video stream in order to estimate the amount of mouse movement. This algorithm analyzed the 

video stream in real time, as it was being saved to disk, and it was capable of analyzing up to 

four video cameras simultaneously recording at 30 frames per second, 320 × 240 pixels, 8-bit 

grayscale. Briefly, a reference video sample is taken prior to placing the mouse into the chamber 

(“calibration”). This reference sample establishes the amount of baseline noise inherent in the 

video signal on a per pixel basis, across multiple successive frames. Once the mouse is placed in 

the chamber, successive video frames are continuously compared to each other and to the 

reference sample on a pixel by pixel basis. Any differences between pixels in the current video 

signal larger than those in the reference sample are interpreted as animal movement. These 

differences (in pixels) are summed for each image frame, and this summation is counted as the 

Motion Index. The Motion Index is the number of pixels that have changed within a designated 

time period more than they would change if the mouse was not present (i.e., video noise). For 

video storage, the four streams from the four chambers are saved into one Windows Media 

Video 9 file (WMV3 codec), 320 × 240 pixels (32 bits) per stream, 30 frames, with a variable 

total bitrate averaging about 1200 kb/s. Motion Index numbers were analyzed in a one-way 

between subjects ANOVA (4 levels of drug dose) with a Dunnett’s Test post hoc analysis 
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comparing drug doses to the vehicle control group.  All statistical tests were conducted using 

computer software (Prism 5.0c, GraphPad Software, Inc., San Diego, CA), and all types of 

comparisons were considered statistically significant if p<0.05. 

Results Experiment II 

Experiment II drug studies. 

 KOR Agonists on Contextual Fear. The KOR agonist enadoline was tested and 

significantly increased contextual freezing F(4,35)= 6.736, p< 0.001 on Day 2 (of the new 

methodology). Post hoc analysis revealed that the two highest doses of 0.01 mg/kg and 0.1 

mg/kg significantly increased freezing behavior compared to vehicle on Day 2 (Figure 17). The 

highest dose of enadoline (0.1 mg/kg, p<0.01) also significantly facilitated the effects of 

exposure extinction training on Day 3 F(4,35)= 6.736, p< 0.001 (Figure 17).  

 

Figure 17. Enadoline Contextual Fear. 

This figure illustrates that the percent freezing to context was significantly increased on 

Day 2 after administration of the KOR agonist enadoline (0.01 & 0.1 mg/kg) when 

compared to vehicle.  Also, when enadoline is administered prior to extinction training 

the 0.1 mg/kg dose significantly facilitated the extinction of contextual conditioned 
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freezing that was measured on Day 3 verses vehicle treated groups. Significance is 

denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 There were also significant differences between enadoline treated groups and vehicle 

treated groups in motion index scores on Day 2 F(4,19)=15.06, p<0.0001. The highest two doses 

of enadoline (0.01 mg/kg and 0.1 mg/kg, p<0.0001) significantly reduced motion index scores 

compared to vehicle on Day 2 (Figure 18). 

 
 

Figure 18. Enadoline Activity Data. 

This figure illustrates the significant dose dependant reduction in the activity scores that 

were measured on Day 2 conditioning in enadoline verses vehicle treated groups. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 The KOR agonist U50,488 was tested and did not significantly increase contextual 

freezing F(3,28)= 1.254, p< 0.3092 on Day 2 (Figure 19).  All doses of U50,488 (0.1 mg/kg, 

p<0.05, 1.0 mg/kg p<0.01, and 10 mg/kg p<0.001) significantly facilitated the effects of 

exposure extinction training on Day 3 F(3,28)= 65.37, p< 0.0001 (Figure 19).  
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Figure 19. U50,488 Contextual Fear. 

This figure shows that there was no significant difference in freezing to the conditioned 

context in KOR agonist U50,488 treated groups when compared to vehicle treated 

groups. However, in groups that received U50,488 on Day 2 during extinction training 

there was a significant facilitation of the extinction of freezing to the context when 

compared to vehicle treated groups. Significance is denoted by * p<0.05, **p<0.01, and 

*** p<0.001. 

 

 There were also significant differences between U50,488 treated groups and vehicle 

treated groups in motion index scores on Day 2 F(3,28)=4.500, p<0.05.  The highest (10 mg/kg, 

p<0.01) and lowest doses (0.1 mg/kg, p< 0.05) of  U50,488 significantly reduced motion index 

scores compared to vehicle on Day 2 (Figure 20). 
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Figure 20. U50,488 Activity Data. 

This figure illustrates the significant reduction in the activity scores that were measured 

on Day 2 conditioning in U50,488 treated groups (0.1 mg/kg & 10 mg/kg) verses vehicle 

treated groups.  Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 KOR Antagonists on Contextual Fear. The KOR antagonist nor-BNI was tested and 

significantly reduced contextual freezing F(3,28)=7.054, p< 0.01 on Day 2. Dunnett’s post hoc 

analysis revealed that the all three tested doses 1 mg/kg, 10 mg/kg and 30mg/kg significantly 

(p<0.001) decreased freezing behavior compared to vehicle on Day 2 (Figure 21). The highest 

dose of norBNI (30 mg/kg, p<0.01) also significantly facilitated the effects of exposure 

extinction training on Day 3 (Figure 21).  
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Figure 21. NorBNI Contextual Fear. 

This figure illustrates the significant reduction in percent contextual conditioned freezing 

on Day 2 in all norBNI treated groups when compared to vehicle. Also, shown is the 

facilitation of extinction by the either; the administration of norBNI 30mg/kg before 

extinction training, or its continued activity maintaining a significantly lower freezing 

percentage than vehicle treated groups on Day 3. The interpretation of Day 3 data is 

complicated by norBNI’s extended time course of effects in vivo. Significance is denoted 

by * p<0.05, **p<0.01, and *** p<0.001. 

 

There were also significant differences between norBNI treated groups and vehicle 

treated groups in motion index scores on Day 2 F(3,28)= 2.664, p<0.05 (Figure22). The highest 

dose 30 mg/kg, (p< 0.05) significantly raised motion index scores compared to vehicle on Day 2. 
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Figure 22. NorBNI Activity Data. 

This figure illustrates the significant increase in the activity scores that were measured on 

Day 2 conditioning in norBNI 30 mg/kg treated verses vehicle treated groups. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

Time Course of Contextual Fear Extinction. The KOR agonist enadoline was tested to 

see if the facilitation of extinction persisted over time, compared to vehicle. The 0.1 mg/kg dose 

of enadoline significantly facilitated extinction training F(3,36)=168.8, p<0.0001, evident by 

significantly less freezing on Days 3 and 7 (p<0.001) as well as Day 14 (p<0.01) when compared 

to vehicle (Figure 23).  
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Figure 23. Enadoline Extinction Time Course. 

This figure shows the contextual freezing percentages of six separate groups that 

experienced Day 1 conditioning and Day 2 exposure with an additional test on either Day 

3, Day 7 or Day 14. Three groups received enadoline 0.1 mg/kg on Day 2 and then varied 

time point tests; while three other groups received vehicle on Day 2 and then varied time 

point tests.  Regardless of the time point at which extinction of freezing was measured the 

enadoline 0.1 mg/kg treated groups showed significantly lower freezing than vehicle 

treated groups. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

The KOR antagonist norBNI was tested to see if the facilitation of extinction was stable 

over time, compared to vehicle. The 30 mg/kg dose of norBNI significantly facilitated extinction 

training F(5,70)= 58.20, p<0.0001, evident by significantly less freezing on Days 3, 7, 14, 21, 

and 28 (p<0.001) when compared to vehicle (Figure24).  
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Figure 24. NorBNI Extinction Time Course. 

This figure shows the contextual freezing percentages of ten separate groups that 

experienced Day 1 conditioning and Day 2 exposure with an additional test on either Day 

3, 7, 14, 21 or 28. Five groups received norBNI 30 mg/kg immediately after conditioning 

on Day 1 were tested on Day 2 and then received varied time point tests; while five other 

groups received vehicle immediately after conditioning on Day 1 were tested on Day 2 

and then had varied time point tests.  Regardless of the time point at which extinction of 

freezing was measured the norBNI 30 mg/kg treated groups showed significantly lower 

freezing than vehicle treated groups. Significance is denoted by * p<0.05, **p<0.01, and 

*** p<0.001. 

 

KOR Antagonist Blocking of KOR Agonist Effects. The KOR antagonist norBNI was 

tested in conjunction with enadoline to determine if the behavioral effects were KOR mediated. 

NorBNI pre-treatment blocked, F(4,35)=0.6191, p>0.05,  enadoline’s significant acute 

exacerbation of conditioned freezing on Day 2 (Figure 25). Furthermore, co-administration of 

norBNI blocked, F(4,35)=0.6191, p>0.05,  enadoline’s significant facilitation of extinction on 

Day 3 (Figure 26). 
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Figure 25. NorBNI+ Enadoline Contextual Fear. 

This figure illustrates the percent conditioned freezing that was measured on Day 2 in 

both groups which received enadoline plus vehicle, as well as, groups that received  10 

mg/kg norBNI immediately after conditioning on Day 1 and then one of four doses of 

enadoline on Day 2.  The pretreatment of 10 mg/kg norBNI blocked the significant 

exacerbation of contextual freezing by the administration of enadoline that was observed 

in enadoline/vehicle treated groups. Significance is denoted by * p<0.05, **p<0.01, and 

*** p<0.001. 
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Figure 26. NorBNI+ Enadoline Contextual Fear. 

This figure illustrates the percent conditioned freezing that was measured on Day 3 in 

both groups which received enadoline plus vehicle, as well as, groups that received 10 

mg/kg norBNI immediately after conditioning on Day 1 and then one of four doses of 

enadoline on Day 2.  The pretreatment of 10 mg/kg norBNI blocked the significant 

facilitation of the extinction of contextual freezing by the administration of 0.1 mg/kg 

enadoline that was observed in enadoline+vehicle treated groups. Significance is denoted 

by * p<0.05, **p<0.01, and *** p<0.001. 

 

 The pretreatment of 10 mg/kg norBNI also blocked, F(5,42)=1.860, p>0.05, enadoline’s 

significant motion index reduction on Day 2 as well as having no significant effects of its own on 

the motion index of Day 3 (Figure 27).  
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Figure 27. NorBNI + Enadoline Activity Data. 

This figure illustrates the activity levels that were measured on Day 2 and Day 3 

conditioning in norBNI+enadoline treated groups verses enadoline+vehicle treated 

groups. No significant differences were observed in activity levels. Significance would be 

denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

MOR Agonist Effects on Contextual Fear.  The Mu agonist fentanyl was tested and the 

intermediate dose of 0.01 mg/kg significantly reduced freezing, F(3,28)=11.67, p<0.001 on Day 

2 (Figure28).  While on Day3 all three doses of fentanyl (0.001 and 0.01 mg/kg, p<0.001; 0.1 

mg/kg, p<0.01) significantly facilitated extinction learning (Figure28). The intermediate dose of 

fentanyl, 0.01 mg/kg, significantly increased, F(3,28)=38.51, p<0.0001, the motion index score 

on Day 2 of conditioning compared to vehicle (Figure 29). 
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Figure 28. Fentanyl contextual fear. 

This figure illustrates the significant reduction in percent contextual conditioned freezing 

on Day 2 in the fentanyl 0.01 mg/kg treated group when compared to vehicle. Also 

shown is the significant facilitation of the extinction of contextual conditioned freezing in 

all fentanyl treated groups when compared to vehicle treated groups on Day 3. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

  

 

Figure 29. Fentanyl Activity Data. 
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This figure illustrates the significant increase in activity levels that was measured on Day 

2 of conditioning in the fentanyl 0.01 mg/kg treated group verses vehicle treated groups. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

The MOR agonist morphine was tested and significantly reduced freezing on Day 2, 

F(4,35)= 13.66, p<0.0001, at the highest two doses of 3 mg/kg and 10 mg/kg (Figure 30). 

Morphine also significantly facilitated extinction shown on Day 3 at three doses (1 mg/kg and 3 

mg/kg p<0.01; and 10 mg/kg, p<0.001) (Figure 30). Morphine also significantly increased 

motion index scores over vehicle on Day 2 but only at the highest dose tested, 10 mg/kg, 

p<0.001 (Figure 31). 

 

Figure 30. Morphine Contextual Fear. 

This figure illustrates the significant reduction in percent contextual conditioned freezing 

on Day 2 in morphine treated groups (3 & 10 mg/kg) when compared to vehicle. Also 

shown is the significant facilitation of the extinction of contextual conditioned freezing 

by the administration of morphine (1, 3 & 10 mg/kg) before extinction training when 

compared to vehicle treated groups on Day 3. Significance is denoted by * p<0.05, 

**p<0.01, and *** p<0.001. 
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Figure 31. Morphine Activity Data. 

This figure shows the significant increase in activity levels that was measured on Day 2 

of conditioning in the 10 mg/kg morphine treated group verses vehicle treated groups. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

MOR antagonist effects on contextual fear.MOR antagonist naloxone was tested and 

did not significantly affect freezing behavior, F(3,28)= 0.4814, p= 0.6979, compared to vehicle 

on either Day 2 or Day 3 (Figure 32) . Naloxone also had no significant affects on motion index 

scores, F(3,28)=1.441, p= 0.5207, on Day 2 compared to vehicle (Figure 33).  
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Figure 32. Naloxone Contextual Fear. 

This figure illustrates the no change in percent contextual conditioned freezing on Day 2 

in naloxone treated groups when compared to vehicle treated groups. Also, shown is the 

lack of a significant effect on the extinction of contextual conditioned fear in either 

naloxone or vehicle treated groups. Significance would be denoted by * p<0.05, 

**p<0.01, and *** p<0.001. 

 

 

Figure 33. Naloxone Activity Data. 
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This figure illustrates that there was no significant difference in activity level that was 

measured on Day 2 of conditioning in naloxone treated groups verses vehicle treated 

groups. Significance would be denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

MOR Antagonist Blocking of MOR Agonist Effects.MOR antagonist naloxone (1.0 

mg/kg) was co-administered with morphine to determine if the agonist’s effects could be 

blocked. The co-administration of naloxone with morphine blocked, F(4,35)= 3.96, p=0.5714,  

morphine’s significant acute reduction of conditioned freezing on Day 2 (Figure34). 

Furthermore, co-administration of naloxone blocked, F(4,35)= 3.96, p=0.5714,  morphine’s 

significant facilitation of extinction on Day 3 (Figure 35).  Morphine’s significant increase in 

motion index level on Day 2 was also blocked F(4,35)= 0.2773, p=0.2114, by the co-

administration of naloxone (Figure 36). 

 

Figure 34. Naloxone + Morphine Acute Contextual Fear. 

This figure illustrates the percent conditioned freezing that was measured on Day 2 in 

groups which received morphine+vehicle, as well as, groups that received 1.0 mg/kg 

naloxone and then one of four doses of morphine on Day 2.  The co-administration of 1.0 

mg/kg naloxone blocked the significant reduction in contextual freezing that was 
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observed in morphine +vehicle treated groups. Significance is denoted by * p<0.05, 

**p<0.01, and *** p<0.001. 

 

 

Figure 35. Morphine+ Naloxone Extinction of Contextual Fear. 

This figure illustrates the percent conditioned freezing that was measured on Day 3 in 

groups which received morphine+vehicle, as well as, groups that received 1.0 mg/kg 

naloxone and then one of four doses of morphine on Day 2.  The co-administration of 1.0 

mg/kg naloxone blocked the significant facilitation of the extinction of contextual 

freezing that was observed in morphine +vehicle treated groups on Day 3. Significance is 

denoted by * p<0.05, **p<0.01, and *** p<0.001. 
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Figure 36. Morphine + Naloxone Activity Data. 

This figure illustrates the blocked increase in activity level  measured on Day 2 

conditioning in morphine + naloxone 1 mg/kg treated groups verses vehicle treated 

groups. Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

Mixed MOR agonist/ KOR antagonist contextual fear. The semi-synthetic opioid 

buprenorphine, which exhibits partial agonism at MOR and antagonism at KOR, was tested. 

Buprenorphine significantly reduced freezing on Day 2, F(3,28)= 3.774, p<0.05, at all three 

doses tested 0.3 mg/kg, 1 mg/kg, and 3 mg/kg, p<0.0001 (Figure 37). Buprenorphine did not 

significantly facilitate extinction shown on Day 3 at any of the three doses, p>0.05 (Figure 37). 

Buprenorphine also significantly increased motion index scores over vehicle on Day 2 F(3,28)= 

8.936, p<0.0001 at all doses  tested, 0.3 mg/kg & 1 mg/kg, p<0.0001  and 3 mg/kg, p<0.05   

(Figure 38). 
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Figure 37. Buprenorphine Contextual Fear. 

This figure illustrates the significant reduction in percent contextual conditioned freezing 

on Day 2 in buprenorphine treated groups (0.3, 1 & 3 mg/kg) when compared to vehicle. 

Also shown is the lack of effect of buprenorphine on extinction of contextual conditioned 

freezing when compared to vehicle treated groups on Day 3. Significance is denoted by * 

p<0.05, **p<0.01, and *** p<0.001. 

 

 

Figure 38. Buprenorphine Activity Data. 
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This figure illustrates the significant increase in activity levels that was measured on Day 

2 conditioning in buprenorphine treated groups verses vehicle treated groups. 

Significance is denoted by * p<0.05, **p<0.01, and *** p<0.001. 

 

 A summary table of the results from both experiments and their findings can be found 

below in Table 2. Results are grouped according to the type of ligand and their effects on the 

acute expression of freezing behavior, extinction, and whether these effects were stable at 

different times points tested in the time course for each drug.  

 Table 2 
 
Type of Ligand 

 
Acute 
Expression 

 
Extinction 
Effects 

 
Time Course  

KOR agonist ↑ Freezing   ↑ facilitates Stable 
 

KOR antagonist ↓ Freezing ↑ facilitates Stable 
 

KOR antagonist +agonist Ø Freezing Unclear *  
 

MOR agonist ↓ Freezing ↑ facilitates  
 

MOR antagonist ↔ Freezing ↔ No effect  
 

MOR antagonist +agonist Ø Freezing Ø blocked  
 

MOR agonist/KOR 
antagonist 

↓ Freezing ↔ No effect  
 

 

 

 

 

 

 

 

 

Discussion Experiment II 

KOR modulation of fear behavior and extinction. 

 Once the methods had been reworked with a concentration on contextual fear behavior 

and had the added measurement of extinction, I wanted to retest the KOR compounds, enadoline 

and U50,488. This was both for a direct comparison check on the new procedure but also 

because the Cain article used an anxiogenic drug to facilitate extinction of fear conditioning. Our 
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previous results showed a significant exacerbation of freezing with both enadoline and U50,488 

but the effects they would have on extinction had not yet been explored.   

 The KOR agonist enadoline was tested and in the new procedure significantly 

exacerbated freezing in the conditioning context at the highest two doses (Fig 17) identical to the 

original contextual measurements from the first methods. These two highest doses also 

significantly reduced the motion index (Fig 18), mirroring the results of the original methods 

when total distance traveled was the variable measured. However, the interesting results are the 

Day 3 extinction tests which show that the highest dose of enadoline facilitated the extinction of 

freezing in the conditioned context (Fig 17). This follows the results that Cain (2004) observed 

using yohimbine an anxiogenic alpha 2 receptor antagonist. That two different receptor systems 

can produce the same effects in a similar task is extremely interesting. It also seems 

counterintuitive that an anxiogenic would improve extinction learning in an aversive task.  

 The KOR agonist U50,488 showed similar exacerbation of freezing in the conditioning 

context in the original methods but again extinction effects had not yet been measured. When 

tested using the new methods, U50,488 did not significantly exacerbate freezing in the 

conditioning context (Fig 19). This was interesting because the highest and lowest doses tested 

both significantly reduced motion index scores (Fig 20). I think that this shows that the motion 

index is sensitive to changes in activity that are not related to increases in freezing. Though 

U50,488 did not exacerbate freezing on Day 2, all doses tested facilitated the extinction of 

freezing in the conditioning context. I think that this shows that the kappa activation does not 

necessarily need to increase freezing to be effective as an aid to extinction learning. 

 The KOR antagonist norBNI was also tested using the new methods.  As expected the 

compound showed anxiolytic properties and decreased freezing to the conditioning context at all 

doses tested (Fig 21). The highest dose tested also significantly increased motion index scores 
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(Fig 22).  Interestingly, the highest dose of norBNI significantly facilitated the extinction of 

freezing to the conditioning context (Fig 21).  This suggests that the fluctuation of motion scores 

on Day 2 (either increased or decreased) is not predictive of the facilitation of extinction on Day 

3. It is also intriguing that drugs with opposite actions at the same receptor can both produce 

similar effects on extinction. For further clarification of these effects it was important to establish 

if the extinctions effects we observed were stable over time. 

 The highest dose of enadoline was tested at different time points post extinction exposure 

to see if the facilitation of extinction was stable. Groups were tested at either Day 3, 7, or 14 after 

undergoing the same conditioning as before (Fig 23).  The significantly facilitated extinction of 

freezing to the conditioning context with enadoline 0.1 mg/kg was the same no matter which day 

extinction was tested. All days the enadoline groups maintained a significantly lower percent 

freezing than vehicle groups, indicating that this facilitation of extinction was a stable 

phenomenon.  

 The highest dose of norBNI was tested at different time points post extinction exposure to 

see if the facilitation of extinction was stable. Groups were tested at either Day 3, 7, 14, 21, or 28 

after undergoing the same conditioning as before (Fig 24).  The significantly facilitated 

extinction of freezing to the conditioning context with norBNI 30 mg/kg was the same no matter 

which day extinction was tested. All days the norBNI groups maintained a significantly lower 

percent freezing than vehicle groups, indicating that this facilitation of extinction was also a 

stable phenomenon.  

 Since drugs with opposite receptor activity were both facilitating extinction it was of 

interest to see if the antagonist could block the agonist’s influence on this behavior. The 

administration of 10 mg/kg norBNI in conjunction with a full dose curve of enadoline was tested. 

This administration of the antagonist (administered 24 hours previous to enadoline due to 
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norBNI’s unique pharmacology) blocked all significant exacerbation of acute freezing to the 

conditioned context (Fig 25). Additionally the all significant motion index decreases by 

enadoline were blocked by norBNI (Fig27). Day 3 data on extinction are harder to interpret. The 

drug norBNI is active for at least three weeks days (Knoll & Carlezon, 2010), so the apparent 

blocking of the facilitation of extinction by enadoline may be due to norBNI’s continued action 

in vivo. The antagonist’s ability to block enadoline’s effects on fear behavior supports that this 

modulation is happening centrally.  

MOR modulation of fear behavior and extinction. 

 The MOR analgesics fentanyl and morphine were both tested to evaluate their effects on 

acute fear behavior and the extinction of fear behavior. The analgesic fentanyl is an opioid 

agonist and is slightly more selective for the mu type receptor than morphine though their 

efficacy is similar (Volpe et al., 2011). Fentanyl significantly reduced freezing to the 

conditioning context on Day 2 at the intermediate dose (Fig 28).  This dose also significantly 

increased the motion index on Day 2 (Fig 29). All three doses of fentanyl facilitated extinction of 

freezing to the conditioning context (Fig 28).   

 The MOR analgesic morphine was also tested and is of greatest interest due to the 

initiation of this project by clinical studies involving morphine’s apparent beneficial effects on 

trauma patients. Morphine significantly reduced freezing acutely at the two highest doses tested 

(Fig 30) while significantly increasing the motion index only at the highest dose tested (Fig 31). 

This could translate clinically to the acute relief of symptoms. Morphine also significantly 

facilitated the extinction of freezing to the conditioning context (Fig 30).  Activation of the MOR 

appears to have beneficial effects both on the acute expression of fear behavior and on the 

facilitation of extinction. 



www.manaraa.com

 
 

91 
 

 The administration of the opioid antagonist naloxone was predicted to not reduce acute 

fear or affect the extinction learning process. When tested for its effects on freezing to the 

conditioned context naloxone had produced no significant increase or decrease on freezing 

behavior (Fig 32).  Additionally naloxone did not significantly reduce or increase the 

effectiveness of extinction on Day 3 (Fig 32). Locomotor effects of naloxone were no different 

than that of vehicle. Naloxone administration didn’t produce any measureable effects on the 

expression or extinction of contextual freezing behavior in this assay.  

 The beneficial effects of morphine on the extinction and expression of conditioned 

freezing if produced by activation of mu receptors centrally should be blocked by the co-

administration of naloxone.  Naloxone (1 mg/kg) was administered in conjunction with a full 

dose curve of morphine. Co-administration of naloxone blocked the significant reduction of 

freezing to the conditioned context produced previously by morphine (Fig 4) on Day 2. 

Additionally, naloxone co-administration on Day 2 blocked the facilitation of the extinction of 

contextual freezing observed previously in the 1, 3, and 10 mg/kg morphine groups (Fig 35). The 

significant increase in motion index scores on Day 2 produced by the highest dose of morphine 

was also blocked by naloxone (Fig 36).   

Mixed MOR agonist/KOR antagonist modulation of fear behavior and extinction. 

 The previous results suggest that the activation of MOR in conjunction with the 

antagonism of KOR might have beneficial effects on conditioned contextual freezing. The drug 

buprenorphine is a partial agonist at MOR and an antagonist at KOR, and is used clinically as a 

replacement treatment for opioid addiction as well as for chronic and acute pain (Howland, 

2010). Buprenorphine was tested to ascertain its effects on freezing to the conditioned context. 

There was a significant decrease in contextual freezing on Day 2 at all doses of buprenorphine 

tested (Fig 37). Motion index was significantly increased for Day 2 at all doses tested (Fig 38) 
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but there was no facilitation of extinction by buprenorphine (Fig 37).  The large increase in 

motion index makes data interpretation difficult as the declines in freezing may be due solely to 

locomotor activation effects. Regardless of Day 2 interpretation, no lasting changes were 

observed in freezing behavior on Day 3.  

General Discussion and Conclusions 

Overall, between the two experiments, there is evidence that opioid compounds can influence the 

expression and extinction of conditioned fear in C57BL/6J mice. In Experiment I it was observed 

that KOR agonists acutely exacerbated conditioned freezing in cue and contextual tests. There 

were some reductions in locomotor activity in the open field with kappa agonists and some long 

lasting increases in anxiety like locomotor behavior. It is unclear from the results of Experiment I 

if that change was solely due to KOR modulation, or was due to fear conditioning as similar 

changes were seen in the KOR antagonist groups. KOR antagonist norBNI reduced conditioned 

freezing acutely, and had no acute reduction in locomotor activity though as mentioned 

previously, it did result in the same pro-anxiety reallocation of behavior away from the center of 

the open field.  These results supported previous research indicating that KOR antagonists 

display anxiolytic properties (Beardsley, Pollard, Howard, & Carroll, 2010; Carey, Lyons, Shay, 

Dunton, & McLaughlin, 2009; Schindler, Li, & Chavkin, 2010; Sperling, Gomes, Sypek, Carey, 

& McLaughlin, 2010) and that KOR agonists display anxiogenic properties (Carey, et al., 2009; 

Lemos, Roth, & Chavkin, 2011; Pezze & Feldon, 2004; Ponnusamy, Nissim, & Barad, 2005; 

Schindler, et al., 2010; Sperling, et al., 2010).  

  The conflicting results seen in the open field data showing that both compounds 

appeared to induce anxiogenic behavior could reflect a limitation of this procedure in predicting 

anxiolytic effects (Prut & Belzung, 2003), or could have been confounded by the exposure of the 

mice to the fear conditioning paradigm before exposure to the open field. One approach to 
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addressing the possible confound would have been to test additional groups of animals in the 

open field with just drug exposure instead of drug and fear learning exposure. Another method to 

counteract this confound was to use the movement index calculations generated within the fear 

conditioning chamber at the time of exposure as the measure of activity.  

 Additionally, in Experiment I diazepam, a positive allosteric modulator of GABAA 

receptors, was shown to also increase conditioned freezing and at the highest dose reduced 

locomotor activity in the open field. Initially, it was assumed that diazepam would serve as a 

positive control in this experiment as it is used as an anxiolytic clinically. Unfortunately, 

diazepam did not produce the expected anxiolytic like behavior in this assay.  One explanation 

for this may have been that the majority of source material on diazepam in anxiety assays is in 

rats not mice (Asth, Lobao-Soares, Andre, Soares, & Gavioli, 2012; Shikanai et al., 2010; 

Zbinden & Randall, 1967). The previous research in mice exploring the effects of diazepam is 

mostly in other anxiety assays, elevated plus maze, light dark box, passive avoidance (Crestani, 

Assandri, Tauber, Martin, & Rudolph, 2002; Crestani et al., 2002; Pamplona et al., 2011). The 

effects of diazepam in other anxiety behavior assays is as predicted, but in fear conditioning the 

data are less consistent or diazepam is given prior to consolidation, not post training (Crestani, 

Assandri, et al., 2002; Crestani, Keist, et al., 2002; Pamplona, et al., 2011). Mice undergoing 

trace fear conditioning, for example, display enhanced freezing when given diazepam (Crestani, 

Keist, et al., 2002). This leads me to conclude that diazepam in this assay did not display 

anxiolytic properties. This left me without a positive control in this model, but this reflects the 

lack of a ‘gold standard” in clinical treatment for this disorder.  The two approved treatments for 

PTSD as discussed previously are SSRI’s that do not produce anxiolytic effects with acute 

treatment. Therefore, it was decided to proceed with additional testing without this control, and 

interpret the obtained data based solely on the differences relative to vehicle conditions.  
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In Experiment II the same general results were observed for KOR agonists (increased 

conditioned contextual freezing) and KOR antagonists (decreased conditioned contextual 

freezing) acutely. In the newly obtained extinction data, however, it was observed that both KOR 

agonists and KOR antagonists facilitated extinction to conditioned contextual freezing. When a 

time course experiment was conducted, both the KOR agonist and the KOR antagonist 

facilitation of extinction were stable over several weeks with freezing levels staying at near 

baseline levels. When the KOR agonist (enadoline) and antagonist (norBNI) were co-

administered, no increase in conditioned freezing was observed on Day 2. The KOR antagonist’s 

blocking of the acute exacerbation of freezing suggests that behavioral response is KOR 

mediated. However, Day 3 extinction data are difficult to interpret due to the long lasting effects 

of norBNI (Endoh, et al., 1992; Knoll & Carlezon, 2010). The facilitation of extinction by 

enadoline appears to be blocked by norBNI, but since norBNI is still pharmacologically active 

(Knoll & Carlezon, 2010) the level of conditioned freezing on Day 3 may reflect the continued 

antagonism of KOR.   

Possible pathways for KOR modulation of fear conditioning. 

 The KOR in humans is distributed throughout the central nervous system and in 

peripheral tissues (Peng, Sarkar, & Chang, 2012). The highest concentration of KOR is in the 

putamen followed by the nucleus accumbens and caudate nucleus. While a moderate amount of 

KORs are also found in the hippocampus, substantia nigra, and dorsal root ganglion (Peng, et al., 

2012).  The endogenous ligands for KOR are the opioid peptides dynorphin A, dynorphin B, 

and α/β-neo-endorphin.(Day et al., 1998; Goldstein, Tachibana, Lowney, Hunkapiller, & Hood, 

1979) which activate the both subtypes of the KOR 1 & 2 (Nyberg & Hallberg, 2007). Kappa 

opioid receptors are g-protein (Gi/G0) coupled receptors. When activated by either endogenous 

ligands or exogenous ligands (e.g., dynorphin, enadoline, U50,488), there is a subsequent  
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increase in phosphodiesterase activity. Since phosphodiesterases break down cAMP, this 

produces an inhibitory effect on neurons (Konkoy & Childers, 1993; Lawrence & Bidlack, 1993; 

Schoffelmeer et al., 1988). However, KORs also couple to inward-rectifier potassium and to N-

type calcium ion channels (Henry, Grandy, Lester, Davidson, & Chavkin, 1995; Tallent, Dichter, 

Bell, & Reisine, 1994). Recent studies have also demonstrated that agonist-induced stimulation 

of the KOR, like other G-protein coupled receptors, can result in the activation of mitogen-

activated protein kinases (MAPK). These include extracellular signal-regulated kinase, p38 MAP 

kinases, and c-Jun N-terminal kinases(Belcheva et al., 2005; Bohn, Belcheva, & Coscia, 2000; 

Bruchas, Macey, Lowe, & Chavkin, 2006; Bruchas, Xu, & Chavkin, 2008; Bruchas, Yang, et al., 

2007; Kam, Chan, & Wong, 2004). 

 Stress has been shown to result in the release of many neuropeptides, among them 

dynorphin (Lemos, et al., 2011). One type of stress in mice that has been linked to the increase in 

release of dynorphins is forced swim stress. Mice that underwent forced swim showed activation 

of both KORs and p38 MAP kinase co-expressed in GABAergic neurons in the nucleus 

accumbens, cortex, and hippocampus; furthermore, this activation was KOR dependant as KOR 

knockout mice or wild type mice treated with norBNI did not show this activation (Bruchas, 

Land, et al., 2007).  The activation of KORs, in mice, by exposure to a stressor like forced swim 

or by administration of a KOR agonist, has been shown to potentiate the reinforcing effects of 

drugs of abuse in behavioral assays like conditioned place preference, intracranial self 

stimulation and ethanol (Carey, et al., 2009; Schindler, et al., 2010; Sperling, et al., 2010).  

Administration of the KOR antagonist norBNI blocks these stress-induced increases and KOR 

activation (Beardsley, et al., 2010). Genetic knockout of the KOR also blocks the stress-induced 

increases in these behaviors (Carey, et al., 2009; Schindler, et al., 2010; Sperling, et al., 2010).  



www.manaraa.com

 
 

96 
 

These observations show a definite link between activation of the KOR and stress as well as a 

demonstrating that a blockade of the KOR can attenuate this effect.   

Short term stress exposure in humans and rodents has long been observed to result in an 

increase in DA release in brain areas including the mesolimbic pathway and the nucleus 

accumbens (NAc) (Abercrombie, Keefe, DiFrischia, & Zigmond, 1989). Intense or chronic 

exposure to stress results in a decrease in DA in those same brain areas (Jensen et al., 2003; 

Marinelli et al., 2007).  Stress and KOR activation show similar behavioral responses in the 

above mentioned assays and the activation of KOR has been shown to reduce DA in NAc (Pezze 

& Feldon, 2004; Ponnusamy, et al., 2005). Systemic administration of the KOR agonist 

salvonorin A reduces DA release in the NAc (Ebner, Roitman, Potter, Rachlin, & Chartoff, 

2010) as does the KOR agonist U50,488 (Di Chiara & Imperato, 1988).  The inhibition of 

dopamine transmission reduces conditioned fear (Pezze & Feldon, 2004). The systemic 

administration of both sulpiride, a dopamine2 (DA) receptor antagonist and the antipsychotic 

clozapine (a DA2 antagonist as well as other actions) facilitate extinction of conditioned fear (Jay 

et al., 2004; Ponnusamy, et al., 2005), while the administration of quinpirole (a DA2 agonist) 

partially blocks extinction (Nader & LeDoux, 1999). This seems to indicate that a reduction of 

DA within the NAc results in an increased efficiency in extinction learning whether induced by a 

KOR agonist indirectly or direct DA2 antagonism. In patients with PTSD a single photon 

emission computerized tomography (SPECT) imaging study revealed brain activity in the NAc 

was found to be higher than in controls (Liberzon et al., 1999). The reduction in DA in this brain 

region suggests that KOR agonists might be returning this brain area to a more normal level of 

activity though it is unknown if mice have an increase in basal levels of NAc activity post fear 

conditioning.  
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Additionally, changes in the DA levels in the NAc core verses the NAc shell have been 

shown to modulate memory consolidation (LaLumiere, Nawar, & McGaugh, 2005; Stevenson, 

Sullivan, & Gratton, 2003), and so the changes in this brain area could be improving the memory 

consolidation of extinction learning, though the acute effect is one of increased conditioned 

freezing. However, KOR activation in other learning models like novel object recognition is not 

effective in facilitating learning (Schindler, et al., 2010).  

The mechanism by which KOR antagonists produce their long acting effects has been 

investigated and one hypothesis attributes it to stimulating c-Jun N-terminal kinase (JNK) 

phosphorylation (Bruchas, Yang, et al., 2007). Pretreatment of mice with the JNK inhibitor 

SP600125 before norBNI attenuates the long acting antagonism. The phosphorylation of JNK 

results in the functional disruption of KOR signaling (Bruchas, Yang, et al., 2007). KOR 

antagonists exhibit an overall anxiolytic and antidepressive profile in many preclinical assays 

(Beardsley, et al., 2005; Knoll, Meloni, Thomas, Carroll, & Carlezon, 2007). When tested in rats, 

KOR antagonists norBNI and JDTic dose-dependently increase open arm exploration in the 

Elevated Plus Maze without affecting Open Field behavior. They both also decreased 

conditioned fear in the Fear Potentiated Startle paradigm (Knoll, et al., 2007). This may indicate 

that KOR antagonists may be particularly effective for the treatment of comorbid depressive and 

anxiety disorders (Knoll, et al., 2007).The long term blockade of the KOR activation pathway 

results in the lack of activation of downstream KOR targets like extracellular signal-regulated 

kinase, p38 MAP kinases, and c-Jun N-terminal kinases (Belcheva, et al., 2005; Bohn, et al., 

2000; Bruchas, et al., 2006; Bruchas, et al., 2008; Bruchas, Yang, et al., 2007; Kam, et al., 2004). 

Administration of KOR agonists in humans is reported to be aversive and depressive (Mizrahi et 

al., 2007). As mentioned above, KOR activation the NAc reduces dopamine function, which is 

associated with depressive and aversive effects in rodents (Nestler & Carlezon, 2006) though we 
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saw that it can also result in facilitation of extinction. It is possible that KOR antagonists make 

stress less aversive by counter acting the intracellular signaling cascades that regulate dynorphin 

expression (McLaughlin, Marton-Popovici, & Chavkin, 2003; Pliakas et al., 2001). 

Possible pathways for MOR modulation of fear conditioning. 

 As previously mentioned, MOR agonist analgesics (i.e., morphine and fentanyl) are 

amongst the most common clinically prescribed pain relievers. They act through MOR 

activation, and MOR are located in diverse areas of both the CNS and PNS (Peng, et al., 2012). 

The highest concentration of MORs are located in the cerebellum, NAc, caudate nucleus, 

putamen, cortex and dorsal root ganglion (Peng, et al., 2012). Not only are these drugs used as 

pain relievers, but are used and abused not only among the general population but among PTSD 

patients. One study of US armed forces service members found that those with mental disorders 

were 2.5 more times as likely to be prescribed opioids, twice as likely to receive two or more 

concurrent prescriptions for opioids and a third more likely to seek early refills on opioid 

prescriptions (Seal et al., 2012). A previous study from the same group found that 11% of 

veterans of Iraq and Afghanistan conflicts met the criteria for substance abuse disorder and of 

those up to 75% received a concurrent diagnosis of depression or PTSD (Seal et al., 2011).   

 It is no surprise that opioids might possibly be used to alleviate anxiety. Many studies 

have demonstrated that during morphine withdrawal humans display anxiety and depression-

related behaviors and there are corresponding behavioral responses in animals (Anraku, Ikegaya, 

Matsuki, & Nishiyama, 2001; Rezayof, Hosseini, & Zarrindast, 2009). Anxiety and depression 

associated with morphine withdrawal can be alleviated by the administration of antidepressant or 

anxiolytic drugs, such as fluoxetine (Zomkowski, Santos, & Rodrigues, 2005). In a preclinical 

model of anxiety, the elevated plus maze, pretreatment with morphine attenuates the restraint 

stress induced reductions in open arm entries and time spent in the open arms as compared to 
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vehicle treated controls (Anand, Gulati, & Ray, 2012). Rats experiencing persistent 

inflammatory pain induced by intraplantar injection of complete Freund's adjuvant show an 

anxiety phenotype in the elevated plus maze and the open field. This anxiety phenotype is 

reversed when rats were treated with morphine (Parent et al., 2012). Heroin addicted individuals, 

in comparison with healthy volunteers, exhibit significantly lower levels of  adrenocorticotropic 

hormone, as well as have reduced levels HPA axis activation in response to a stressor (Gerra, et 

al., 2004; Ho, et al., 1977). Naloxone, an opiate receptor antagonist, increases HPA axis activity 

by blocking an inhibitory opioidergic influence on hypothalamic CRF secretion, and patients 

with PTSD have been reported to exhibit an exaggerated HPA axis response to naloxone. 

Interestingly, naloxone also has been shown to reverse the analgesia of PTSD patients after 

exposure to traumatic reminders. Also, PTSD patients exhibit increased CSF β-endorphin levels, 

suggesting increased activation of the endogenous opioid system. The opiate receptor antagonist, 

naltrexone, has been reported to be effective in treating symptoms of dissociation and flashbacks 

in traumatized patients (Newport & Nemeroff, 2000; Strawn & Geracioti, 2008).  Morphine 

pretreatment attenuated stress induced release of  NE in the thalamus, hypothalamus, 

hippocampus, amygdala and midbrain in rats subjected to restraint stress (Tanaka, et al., 1983).   

Stress is considered a contributing factor in the vulnerability to opiate abuse and can play 

a role in initiating relapse in subjects with a history of abuse (Gaal & Molnar, 1990; Goeders, 

1998, 2003; Hyman, Fox, Hong, Doebrick, & Sinha, 2007; Ilgen, Jain, Kim, & Trafton, 2008). 

Previous research also indicates that stress can alter individual sensitivity to opiates as well as 

suggesting that stress influences the synthesis and effectiveness of clinically used opiates 

(Benedek & Szikszay, 1985; Christie & Chesher, 1982; Christie, Trisdikoon, & Chesher, 1982; 

Sinha, 2001; Sinha, Catapano, & O'Malley, 1999; Sinha, Kimmerling, Doebrick, & Kosten, 

2007; Stohr et al., 1999; Sutton, Grahn, Wiertelak, Watkins, & Maier, 1997). Conversely, long 
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term use of opiates can affect HPA axis responsiveness to stress and induce a greater individual 

sensitivity to stress-related psychiatric disorders (Burnett, Scott, Weaver, Medbak, & Dinan, 

1999; Calogero et al., 1996; Carey, et al., 2009; Price, Risk, Haden, Lewis, & Spitznagel, 2004; 

Yamauchi, Shibasaki, Wakabayashi, & Demura, 1997).  These known interactions between 

opioids and stress suggest that the effects we see in this model strengthens the theory that opioids 

influence and are influenced by stress. 

One brain area that is of specific interest in the interaction of opiates and stress is the 

locus ceruleus, the major brain norepinephrine-containing nucleus. Many opioidergic peptides, 

including MOR agonists and antagonists, are known to act in the locus ceruleus (Kreibich et al., 

2008; Reyes, Chavkin, & van Bockstaele, 2009; Reyes, Drolet, & Van Bockstaele, 2008; Reyes, 

Glaser, Magtoto, & Van Bockstaele, 2006; Reyes, Johnson, Glaser, Commons, & Van 

Bockstaele, 2007; Tjoumakaris, Rudoy, Peoples, Valentino, & Van Bockstaele, 2003; Van 

Bockstaele, Branchereau, & Pickel, 1995; van Bockstaele, Colago, & Pickel, 1996). The locus 

ceruleus is activated during stress exposure and opiates can influence this response (Valentino, 

Foote, & Page, 1993; Valentino & Wehby, 1988a).  Chronic opiate use (Aghajanian & Wang, 

1987; Duman, Tallman, & Nestler, 1988; Fiorillo & Williams, 1996; Valentino & Wehby, 1989) 

and chronic stress (Cuadra, Zurita, Lacerra, & Molina, 1999; Curtis, Pavcovich, Grigoriadis, & 

Valentino, 1995; Curtis, Pavcovich, & Valentino, 1999), chronic CRF (Conti & Foote, 1995, 

1996)have been shown to induce changes in LC plasticity. 

Environmental stimuli provoke phasic reactions of locus ceruleus neurons, which is associated 

with enhanced NE release in target regions (Berridge & Abercrombie, 1999; Florin-Lechner, 

Druhan, Aston-Jones, & Valentino, 1996). Opiates can also change the firing of the locus 

ceruleus (Bremner, et al., 1996).   
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In addition to arousal, the locus ceruleus-NE system is hypothesized to facilitate shifts in 

type of attention, from focused to scanning. This is supported by locus ceruleus recordings in 

nonhuman primates during a focused attention task (Aston-Jones, Rajkowski, & Cohen, 1999; 

Rajkowski, Kubiak, & Aston-Jones, 1994; Usher, Cohen, Servan-Schreiber, Rajkowski, & 

Aston-Jones, 1999). Inattention, drowsiness and poor task performance are associated with low 

tonic locus ceruleus discharge rate. Conversely, focused attention and optimal behavioral 

performance are associated with higher tonic locus ceruleus discharge rates, coupled with robust 

phasic responses to stimuli. If the increase tonic discharge rates are too excessive, then there is a 

reduction in attention to the target stimuli and poor task performance(Aston-Jones, et al., 1999; 

Rajkowski, et al., 1994; Usher, et al., 1999), which may indicate an inverted U-shaped 

relationship between tonic locus ceruleus activity and focused attention.  This could be important 

when considering learning in response to environmental stimuli including stressful ones. 

 There is evidence of opioid receptor localization in the locus ceruleus and 

electrophysiological data showing opiate influence on locus ceruleus activity.  The three classes 

of opioid receptors, MOR, DOR and KOR are prominently distributed within the LC (Van 

Bockstaele, et al., 1995; Van Bockstaele, Chan, & Biswas, 1996; Van Bockstaele, Chan, & 

Pickel, 1996).The MOR is localized postsynaptically within noradrenergic processes (Van 

Bockstaele, Chan, & Pickel, 1996; Van Bockstaele, Colago, Moriwaki, & Uhl, 1996), while the 

DORs and KORs are mainly localized on axon terminals (Kreibich, et al., 2008; Reyes, et al., 

2009; van Bockstaele, Commons, & Pickel, 1997),this may mean that KOR and DOR have a role 

in the presynaptic release of neurotransmitters. Activation by endogenous or exogenous ligands 

of MOR on neurons in the locus coeruleus has an inhibitory effect in this region, and this is 

supported by in vivo and in vitro data  (Aghajanian & Wang, 1987; Korf, Bunney, & Aghajanian, 
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1974; Valentino & Wehby, 1988b; J. L. Williams, Drugan, & Maier, 1984; J. T. Williams, Egan, 

& North, 1982).  

 The inhibitory action of MOR is linked to normal stress reactivity of the locus ceruleus 

because when stress exposure ends neurons there are transiently inhibited, this effect can be 

blocked by local micro-infusion of naloxone (Curtis, Bello, & Valentino, 2001). The local micro-

infusion of naloxone into the locus ceruleus blocks activity of MOR. This blockade results in  

neuron activity in the locus ceruleus remaining elevated even though stress is over, which 

suggests that release of endogenous opioids might normally serve to return the activity of the 

locus ceruleus to normal levels (Curtis, et al., 2001). If put into terms of PTSD, continued high 

level of activity in the locus ceruleus could be reflected in the hyperarousal symptoms of the 

disorder. The release of endogenous opiates or the administration of exogenous opiates might 

serve to modulate the return of the locus ceruleus-NE system to normal function after exposure 

to stress has ended. When an individual is exposed to stress, CRF activates the locus ceruleus 

and attention is shifted from task oriented to scanning attention (Curtis, et al., 2001). This shift in 

attention can promote behavioral flexibility, but if shifted too far from baseline or for too long 

(after stress has ended) this can have a detrimental effect on cognitive processing (Curtis, et al., 

2001). Data suggests that at the termination of stress endogenous opioids are released to inhibit 

the locus ceruleus system and return activity back to normal (Curtis, et al., 2001; Valentino, 

Page, & Curtis, 1991).   

The data from my behavioral experiments show that both MOR and KOR ligands affect 

mouse conditioned freezing behavior. These results support the growing evidence that opioids 

are important compounds that influence stress behavior and should be further characterized due 

to their possible use as treatments in stress related disorders like PTSD, as well as, to understand 

stress related abuse consequences of opiates clinically. 
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Implications for the treatment of PTSD. 

 The data obtained in these preclinical experiments can be applied to our current clinical 

approach to PTSD treatment. The systemic administration of KOR agonists enadoline and 

U50,488 acutely exacerbated freezing behavior. However, if the KOR agonist administration 

took place shortly before an exposure extinction training session, then the extinction of freezing 

to the conditioned context was more effective than in animals treated with vehicle. If we apply 

this result to exposure therapy that is used with PTSD patients it suggests that there is a 

possibility that administration of a KOR agonist during exposure therapy could make this 

therapy more efficient as well as more effective. Exposure therapy is one of the most effective 

behavioral therapies in use with PTSD patients (Cooper, et al., 2005; Hetrick, et al., 2010). 

However, it is only successful in approximately 40% of patients.  A second major concern which 

might contribute to this lack of efficacy is high dropout rates (~30%) during the lengthy 

treatment (8-15 weeks) (Cooper, et al., 2005; Hetrick, et al., 2010).  It would then follow that if 

effective a KOR agonist might reduce the treatment length needed which may result in a higher 

therapy completion rate. An added benefit that might also be suggested by the data is that the 

administration of a KOR agonist might also make the therapy more effective regardless of effects 

on treatment length. The KOR antagonist norBNI produced reductions in acute conditioned 

freezing behavior as well as hastening extinction learning.  So if applied to patients with PTSD 

that would mean that norBNI might provide acute symptom relief as well as improve the efficacy 

of exposure therapy. This would be a double benefit as current pharmacotherapies aren’t 

effective immediately.  These data provide, further support for this protective relationship when 

we consider the current observations regarding MOR analgesics and their link to the reduced 

chances of developing PTSD.  My data show that the administration of MOR agonists, morphine 

and fentanyl, shortly before measurement of acute conditioned freezing results in the significant 
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reduction in this behavior. This indicates that if applied to PTSD treatment the administration of 

MOR agonists might result in an acute reduction of some PTSD symptoms. This may help 

explain the increased rates of substance abuse in PTSD patients (for self-medication) and 

supports the use of MOR agonist analgesics in PTSD at risk populations.  Additionally, the 

administration of MOR analgesics before exposure extinction training also produced more 

efficient extinction learning. The administration of MOR analgesics could function similarly as 

KOR agonists if used in conjunction with exposure therapy, but would also have the added 

benefit of acute symptom relief.  The use of these MOR agonist analgesics, at or near the time of 

trauma, should have the added benefit of reducing later PTSD risk, and so it would be of interest 

to see if this holds true for non-injured PTSD at risk populations.  

 Finally, my results show that buprenorphine, a mixed MOR agonist/ KOR antagonist, 

might have a use as an adjunctive therapy in PTSD. While there seem to be no long term 

reductions in conditioned freezing, much like MOR analgesics or KOR antagonists, fast acute 

relief of some symptoms might be obtained using buprenorphine as an adjunctive treatment with 

SSRIs.  

 More study with opioid compounds is necessary before an understanding of their full 

impact on anxiety and posttraumatic stress disorder can be understood. So far however, it seems 

that the administration of opioids have generally beneficial effects on conditioned fear behavior.  

Most of the compounds investigated here are already used or at least have been studied in 

humans. The growing prevalence and lack of a “gold standard” treatment for posttraumatic stress 

disorder underline the importance of continuing to investigate the impact of opioids on this 

disorder and its treatment.  
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